Mostrando entradas con la etiqueta geometría. Mostrar todas las entradas
Mostrando entradas con la etiqueta geometría. Mostrar todas las entradas

lunes, 18 de agosto de 2025

Teorema de Snover (2000)

Dado un triángulo, construimos cuadrados sobre sus lados y unimos los nuevos vértices para definir tres nuevos triángulos, como se muestra en la figura. Entonces, cada uno de estos tres triángulos tienen la misma área que el triángulo inicial.

La solución es geométrica: Se eliminan los cuadrados y posteriormente se gira cada triángulo 90º en el sentido opuesto de las agujas del reloj. Cada triángulo forma con el triángulo original un nuevo triángulo. Pero al ser el lado común de esos dos triángulos una mediana del triángulo completo, tienen la misma base y altura y por tanto la misma área.
  • Se puede cambiar la forma del trángulo inicial moviendo sus vértices.
  • Siempre se cumple el teorema: mismas áreas.
  • Al mover los deslizadores se pueden girar los triángulos hasta 90 grados.
  • Se pueden mostrar u ocultar los cuadrados.
  • Se puede ver la construcción 'paso a paso'.
  • .

sábado, 21 de junio de 2025

Selectividad Ciencias Sociales Curso-2024-2025

A continuación aparecen los enunciados y las soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y de julio para el bachillerato de ciencias sociales del curso 24/25.

Enunciados y soluciones de junio
Enunciados y soluciones de julio

lunes, 16 de junio de 2025

Selectividad Ciencias-Curso 2024-2025

A continuación aparecen los enunciados y las soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y de julio para el bachillerato de ciencias del curso 24/25.

Enunciados y soluciones de junio
Enunciados y soluciones de julio

viernes, 23 de mayo de 2025

La parábola y el producto de dos números

En la figura se muestra una parábola con un punto A en la rama de la derecha y un punto B en la rama de la izquierda. Se unen mediante un segmento que corta al eje de ordenadas en el punto C. El valor de la ordenada en ese punto es el resultado del producto de dos números que son las abscisas, en valor absoluto, de los puntos A y B.

La pendiente de la recta que pasa por A y B es: $$\frac{a^2-b^2}{a+b}=\frac{(a+b)(a-b)}{a+b}=a-b$$ La ecuación de la recta es: $$y-a^2=(a-b)(x-a)$$ El punto de corte con el eje de ordenadas es: $$y-a^2=(a-b)(0-a)=-a^2+ab \rightarrow y(0)=ab$$
  • Se pueden mover los puntos A y B para obtener el punto C.
  • Se puede ver la construcción 'paso a paso'.
  • .

miércoles, 19 de marzo de 2025

Triangulación de polígonos

Si triangulamos un pentágono, existen cinco formas diferentes de hacerlo. Si nos fijamos en el número de triángulos que comparten un vértice, podemos asignar ese número a cada uno de ellos. Como las cinco figuras se obtienen por rotación de 72º, sólo existe una secuencia de números.
Vamos a construir una cadena infinita de números de la siguiente manera:
Una primera fila de unos y una segunda fila con la secuencia de los vértices repetida de forma indefinida en la posición de los espacios vacíos de la primera fila. La segunda fila se obtiene aplicando la 'regla del diamante':

Se siguen completando filas hasta llegar a otra vez a una fila de unos.  Se observa que hay dos filas entre las filas de unos.
En el caso del hexágono es más complejo pues hay varias formas de triangularlo. Los seis primero tienen una secuencia válida para todos pues basta hace rotaciones de 60º.
Se observa que se necesitan tres filas hasta llegar de nuevo a la fila de unos. 
Ahora se hace una triangulación en zig-zag y existen dos secuencias diferentes pero que también necesitan tres filas hasta llegar a la fila de unos.
Por último hay otro tipo de triangulación con sólo dos casos. Como en todo hexágono se necesitan tres filas hasta llegar a la fila de unos.
En los polígonos de 3 y 4 lados observamos que en el triángulo ya se obtienen los unos al introducir la secuencia de vértices y en el caso del cuadrado sólo hay una fila entre las filas de unos.
El número de triangulaciones aumentan según los lados del polígono siguiendo la serie de los números de Catalan: 1, 2, 5, 14, 42, 132, 429, 1430, 4862 .... Vemos que se necesitan 0, 1, 2 y 3 filas para partiendo de una fila de unos llegar a otra fila de unos. La fórmula general es F=N-3, siendo F el número de filas y N el número de lados del polígono. 
Por tanto,  se puede conseguir con cualquier polígono  como  demostró  el Teorema de Coxeter-Conway. A este tipo de secuencias le llamó Coxeter 'Frieze Patterns'.

domingo, 29 de septiembre de 2024

Problema de Thanos Kalogerakis (2017)

BC es el diámetro de un circulo; M es el punto medio del arco inferior BC; A es un punto en el arco superior BC. El punto D está en la semirrecta que pasa por A y B de forma que MD es perpendicular a AB; el punto E está en la semirrecta que pasa por A y C de forma que ME es perpendicular a AC. Se cumple que: $$\frac{AB}{MD}+\frac{AC}{ME}=2$$
DEMOSTRACIÓN
En primer lugar, ADME es un cuadrado porque, debido a que M es el punto medio del arco que subtiende el ángulo BAC (que es recto), los ángulos DAM=EAM=45º y, posteriormente, dado que ADME es claramente un rectángulo, los ángulos AMD=AME=45º, lo que hace que ADME sea un cuadrado. $$AB=AD-BD=MD-BD$$ $$AC=AE+EC=MD+EC$$ $$AB+AC=2MD+EC-BD$$ Los triángulos BMD y CME son iguales al ser rectángulos, MD=ME y los ángulos CME=BMD. Por tanto EC=BD. $$AB+AC=2MD \rightarrow \frac{AB}{MD}+\frac{AC}{MD}=\frac{AB}{MD}+\frac{AC}{ME}=2$$
  • Se pueden mover el centro del círculo y el punto C para dimensionar y desplazar la figura.
  • Moviendo el punto A a lo largo del semicírculo se comprueba la propiedad.
  • Se puede ver la construcción 'paso a paso'.
  • .

sábado, 15 de junio de 2024

Selectividad Ciencias-Curso 2023-2024

A continuación aparecen los enunciados y las soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y de julio para el bachillerato de ciencias del curso 23/24.

Enunciados y soluciones de junio
Enunciados y soluciones de julio

viernes, 22 de marzo de 2024

Puntos y segmentos

Presentamos unos juegos donde hay que unir los puntos de una red rectangular con el menor número de segmentos rectilíneos.

Une los 4 puntos con 3 segmentos rectilíneos y los 9 puntos con 4 segmentos rectilíneos de la figura, sin levantar el lápiz del papel.
Une los 16 puntos con 6 segmentos rectilíneos y los 25 puntos con 8 segmentos rectilíneos de la figura, sin levantar el lápiz del papel.
Une los 36 puntos con 10 segmentos rectilíneos y los 49 puntos con 12 segmentos rectilíneos de la figura, sin levantar el lápiz del papel.
Soluciones

martes, 30 de enero de 2024

Teorema de Conway

Sea un triángulo cualquiera ABC con incentro O y cuya circunferencia inscrita es tangente a los lados en Q, R y S. Los segmentos del mismo color son iguales: CR=CQ (azul ), AS=AR (verde) y BS=BQ (rojo) por construcción.
  • Se prolonga el segmento AB hasta F, siendo AF=AP (azul)+PF (rojo).
  • Se prolonga el segmento AB hasta I, siendo BG=BL (verde)+LI (azul).
  • Se prolonga el segmento BC hasta H, siendo BH=BK (verde)+KH (azul).
  • Se prolonga el segmento BC hasta D, siendo CD=CN (rojo)+ND (verde).
  • Se prolonga el segmento CA hasta G, siendo AG=AJ (azul)+JG (rojo).
  • Se prolonga el segmento CA hasta E, siendo CE=CM (rojo)+ME (verde).
Se observa que los siguientes segmentos son iguales por estar formados por tres subsegmentos de diferente color:
  • SF=AS (verde)+AP (azul)+PS (rojo)
  • SI=SB (rojo)+BL (verde)+LI (azul)
  • QD=QC (azul)+CN (rojo)+ND (verde)
  • QH=QB(rojo)+BK (verde)+KH (azul)
  • RE=RC (azul)+CM (rojo)+ME (verde)
  • RG=RA (verde)+AJ (azul)+JG (rojo)
Los triángulos OSF, OSI, ORG, ORE, OQD y OQH son rectángulos y como tienen los mismos catetos, también tienen la misma hipotenusa que es el radio de la circunferencia que pasa por los puntos D, E, F, G H e I. Estos puntos cumplen las condiciones que impone el teorema de Conway (longitudes prolongadas de los lados desde un vértice iguales a la longitud del lado opuesto). Queda probado el teorema de Conway y además que el centro de esa circunferencia es el incentro del triángulo.



  • Se pueden mover los vértices del triángulo.
  • Se puede ver la construcción 'paso a paso'.
Generalización del teorema (Francisco Javier García Capitán):

En el triángulo ABC se sitúa en su interior un punto arbitrario D . Se traza la recta que pasa por el lado AB y su paralela por el vértice opuesto C. Se traza el segmento que pasa por A y D y que corta  en E y el segmento que pasa por B y D que corta en F. Se traza el segmento paralelo al lado AC desde F que corta en G y el segmento paralelo al lado BC que corta en H. Los puntos G y H son dos de los seis puntos buscados. Repitiendo, de forma análoga el proceso, a partir de los lados BC y AC respectivamente se obtendrían los cuatro puntos restantes. Por estos seis puntos pasa una elipse que se convierte en cÍrculo cuando el punto variable D coincide con el incentro del triángulo.
  • Se pueden mover los vértices del triángulo.
  • Se puede desplazar el punto hueco y al situarlo sobre el incentro se obtiene una circunferencia.

miércoles, 11 de octubre de 2023

Teorema de Mickey Mouse

Sean los círculos (A) y (B) tangentes exteriores al círculo (C) con los puntos de tangencia F y G, respectivamente. Sean D y E los puntos de tangencia de la recta tangente a ambos círculos, repsectivamente. Si la recta que pasa por D y F se corta con la recta que pasa por E y G en el punto E, entonces ese punto pertenece al círculo (C) y la recta tangente en ese punto es paralela a la recta que pasa por D y E.
DEMOSTRACIÓN

Para la demostración sólo se necesitan los círculos de centros A y C. La prolongación del segmento DF corta al círculo de centro C en el punto H. Los triángulos ADF y CFH son isósceles porque dos de sus lados son radios de los círculos respectivos. Como los ángulos AFD y CFH son iguales, al ser opuestos por el vértice, también son iguales a los ángulos ADF y CHF. Por tanto AD es paralelo a CH, y ya que AD es perpendicular a la tangente al círculo (A) en D, también es verdad para CH. Pero CH es también perpendicular a la tangente al círculo (C) en H. Por tanto ambas tangentes son paralelas.

Podemos decir que H se encuentra en la perpendicular a la tangente en D a través de (C). Dado que originalmente (A) y (B) comparten esa tangente DE, EG necesariamente pasa por H, de modo que las prolongaciones de CA y DB se encuentran en el círculo (C).

De la prueba anterior queda claro que la presencia de dos 'orejas' de Mickey Mouse en el teorema, aunque divertida, no es esencial. El resultado básico solo trata con un círculo (O1), mientras que la afirmación sigue siendo válida para cualquier número de círculos (O2), (O3),…, simultáneamente tangentes a (O) y a una tangente seleccionada a (O1).



  • Se puede modificar el tamaño y la posición del círculo grande moviendo los puntos C e I.
  • Se puede cambiar el tamaño de los círculos pequeños moviendo los puntos A y B.
  • Se pueden desplazar los círculos tangentes sobre el círculo grande moviendo los puntos F y G.
  • Se puede ver a Mickey Mouse pulsando en el botón.
  • domingo, 25 de junio de 2023

    Selectividad Ciencias-Curso 2022-2023

    A continuación aparecen los enunciados y las soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y de julio para el bachillerato de ciencias del curso 22/23.

    Enunciados y soluciones de junio
    Enunciados y soluciones de julio

    viernes, 6 de enero de 2023

    Disección de Dudeney (II)

    La forma de dividir un triángulo equilátero en cuatro polígonos (2 triángulos y 2 cuadriláteros) para con ellos construir un cuadrado también se conoce como el 'Problema del Mercero" (Haberdasher Problem). En esta nueva entrada se muestra otra forma de obtener la 'Disección de Dudeney':
    • Se construye el triángulo equilátero ABC
    • Se obtienen los puntos medios D y E de los lados AB y BC.
    • Se trazan las rectas perpendiculares al lado AC que pasan por D y E.
    • Se obtienen los puntos de intersección F y G sobre el lado AC.
    • Se traza el segmento EF.
    • Se trazan las perpendiculares desde D y G sobre el segmento EF.
    • Se obtienen los puntos de interesección H e I.
    Si llamamos a al lado del triángulo, se tiene que su área es: $$A_t=\frac{\sqrt{3}}{4}a^2$$ Como ha de ser igual al área de un cuadrado: $$A_t=A_c \rightarrow \frac{\sqrt{3}}{4}a^2=l^2 \rightarrow l=\frac{\sqrt[4]{3}}{2}a$$
    • Moviendo los deslizadores se puede convertir el triángulo en un cuadrado.
    • Dada la medida del lado del triángulo (AB) y del segmento (GI) se puede comprobar que estos valores están de acuerdo con que el segmento es la mitad del lado del cuadrado.
    Veamos por qué el segmento IG es la mitad del lado del cuadrado. Simplificamos el cálculo tomando un triángulo equilátero de lado a=2: $$A_t=A_c \rightarrow \frac{\sqrt{3}}{4}·2^2=l^2 \rightarrow l=\sqrt[4]{3}$$
    • Se prolonga la altura AE hasta J, de forma que EJ=EB=1 y K es el punto medio de AJ
    • Se traza el círculo de centro K y radio AK: $$AK=\frac{1}{2}(AE+EJ)=\frac{\sqrt{3}+1}{2}$$
    • Se prolonga BE hasta M y se obtiene el triángulo EMK donde: $$MK=\frac{\sqrt{3}+1}{2}$$ $$EK=AE-AK=\sqrt{3}-\frac{\sqrt{3}+1}{2}=\frac{\sqrt{3}-1}{2} $$
    • Aplicando el teorema de Pitágoras: $$EM=\sqrt{\frac{\sqrt{3}+1}{2})^2-(\frac{\sqrt{3}-1}{2})^2}=\sqrt[4]{3} $$
    • que es el tamaño del lado del cuadrado.}
    • Se traza el círculo de centro E y radio EF=EM. Y si 'alfa' es el ángulo EFC, aplicando el teorema del seno: $$sen(\alpha)=\frac{sen(60)·EC}{EF}=\frac{\sqrt{3}/2·1}{\sqrt[4]{3}}=\frac{\sqrt[4]{3}}{2}$$
    • FG=EC=1 y GI es perpendicular a FE: $$GI=FG·sen(\alpha)=1·\frac{\sqrt[4]{3}}{2}=\frac{\sqrt[4]{3}}{2}$$

      lunes, 10 de octubre de 2022

      Teorema de Von Schoonen

      Frans van Schooten (1615-1660) fue un matemático holandés que debe su fama al desarrollo y explicación de las nuevas ideas matemáticas contenidas en La Géométrie de René Descartes que dieron origen a la geometría analítica. El teorema, que lleva su nombre y es poco conocido, describe una propiedad de los triángulos equiláteros:

         Para un triángulo equilátero ABC con un punto D en su circuncentro, los segmentos AD, BD y CD que unen D con cada uno de los vértices del triángulo, verifican que el segmento mayor es igual a la suma de los otros dos.

      • Los puntos A y B permiten cambiar la posición y el tamaño de la figura.
      • El punto D se puede desplazar por la circunferencia.
      • Se puede ver la construcción 'paso a paso'.
      El teorema es consecuencia del teorema de Ptolomeo para cuadriláteros inscritos en una circunferencia (cuadriláteros cíclicos): $$|BC| \cdot |DA|=|AC| \cdot |DB|+|AB| \cdot |DC| \rightarrow |DA|= |DB|+ |DC|$$ siendo |DA| el segmento mayor y ser el triángulo equilátero.

      miércoles, 15 de junio de 2022

      Selectividad Ciencias-Curso 2021-2022

      A continuación aparecen los enunciados y las soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y de julio para el bachillerato de ciencias del curso 21/22.

      Enunciados y soluciones de junio
      Enunciados y soluciones de julio

      viernes, 27 de mayo de 2022

      En el espíritu de Wasan (II)

      Podemos añadir que el wasan se desarrollo en el período Tokugawa (1603-1868) cuando el país estaba aislado de las influencias europeas. Al comienzo del período imperial (1868-1945), el país se abrió a occidente adoptando su matemática, lo que supuso el declive de las ideas utilizadas en el wasan.

      Veamos otro  ejemplo sencillo que también utiliza el teorema de Pitágoras.

      Una circunferencia es tangente interior a una circunferencia mayor y a su diámetro. Construir la circunferencia tangente a ambas y a ese diámetro y expresar su radio en función de la circunferencia mayor.

      Sea R el radio de la circunferencia mediana de centro E y r el radio del la circunferencia buscada. En el triángulo ADE, aplicando el teorema de Pitágoras, se tiene:

      $$(R+r)^2=AD^2+(R-r)^2 \rightarrow 4Rr=AD^2$$

      De forma análoga, en el triángulo ABC se tiene:

      $$(2R-r)^2=BC^2+r^2 \rightarrow  4R^2-4Rr=BC^2$$

      Como AD=BC se tiene que:

      $$4R^2-4Rr=4Rr \rightarrow 4R^2=8Rr \rightarrow R=2r$$

      Entonces el centro A, del la circunferencia buscada, se puede obtener como intersección de dos circunferencias de centros C y E y de radio 3R/2.

      • Los puntos azules permiten cambiar la posición y el tamaño de la figura.
      • Se puede ver la construcción 'paso a paso'.

      lunes, 18 de abril de 2022

      En el espíritu de Wasan (I)

      Hay una palabra, wasan, que utilizan los japoneses para referirse  a sus matemáticas frente a yosan o matemáticas occidentales. Aunque el wasan se debe a varios matemáticos japoneses, los iniciadores son Kambei Mori (principio siglo 17) y Yoshida Mitsuyoshi (1598-1672). Veamos un ejemplo sencillo que utiliza el teorema de Pitágoras.

      Los centros A y B de dos círcunferencias iguales están en la circunferencia de la otra. Construir una circunferencia tangente a la recta AB, a la circunferencia de centro A interiormente y a la circunferencia de centro B exteriormente.

      Llamamos AB=a, AF=x y GF=r (el radio de la circunferencia buscada). En el triángulo BFG, aplicando el teorema de Pitágoras, se tiene:

      $$(a+r)^2=r^2+(a+x)^2$$

      y , de forma análoga, en el triángulo AFG se cumple:

      $$ (a-r)^2=r^2+x^2$$

      Simplificando ambas ecuaciones y restando se obtiene:

      $$4ar=a^2+2ax \rightarrow x+ a/2=2r$$

      Significa que el lado EF del cuadrado ACDE, siendo C el punto medio del segmento AB, es un diámetro de la circunferencia buscada. Por tanto es fácil su construcción.

      • Los puntos A y B permiten cambiar la posición y el tamaño de la figura.
      • Se puede ver la construcción 'paso a paso'.

      lunes, 28 de febrero de 2022

      Método de Lill

      El ingeniero y oficial del ejército austríaco Eduard Lill (1830-1900) ideó en matemáticas un procedimiento gráfico para determinar las raíces reales de un polinomio, que en esencia es una representación gráfica del algoritmo de Horner. Publicó su invento en 1867 en la revista francesa 'Nouvelles Annales de Mathématiques', y Charles Hermite proporcionó una descripción del mismo para el 'Compes rendus' del mismo año. Más tarde se conoció como el método de Lill.

      El método de Lill implica expresar los coeficientes de un polinomio como magnitudes de una secuencia de segmentos en ángulos rectos entre sí. Encontrar las raíces se convierte en la realización de un problema geométrico. Vamos a explicarlo con el siguiente polinomio:

      $$p(x)=1x^3+5x^2+7x+3$$

      Siempre se puede hacer que el coeficiente de la potencia más alta sea la unidad, basta dividir todo el polinomio por ese valor. Se construye un primer segmento AB=1 y a continuación se construyen los segmentos perpendiculares correspondientes a los demás coeficientes del polinomio de la siguiente forma:

      Hacia arriba BD=5, hacia la izquierda DF=7 y hacia abajo FH=3 porque todos los coeficientes son positivos. Cuando son negativos,  se construyen en el sentido contrario a partir del extremo B. Se traza un segmento AC con el extremo en un punto cualquiera del segmento BD. Se traza el segmento CE perpendicular a AC y el segmento EG perpendicular a CE.

      $$tg (\alpha)=\frac{BC}{AC}=\frac{BC}{1}=BC=-x$$

      $$tg (\alpha)=\frac{BC}{AC}=\frac{BC}{1}=BC=-x \rightarrow CD=5-(-x)=5+x$$

      $$tg (\alpha)=\frac{DE}{CD}=\frac{DE}{5+x}=-x \rightarrow DE=-x(5+x) \rightarrow EF=7+x(5+x)$$

      $$tg (\alpha)=\frac{FG}{EF}=\frac{FG}{7+x(5+x)}=-x \rightarrow FG=-x(7+x(5+x)) \rightarrow $$

      $$GH=3+x(7+x(5+x))=3+x(7+5x+x^2)=3+7x+5x^2+x^3$$

      Es decir, obtenemos el polinomio pero expresado según el algoritmo de Horner.
      Si se divide el polinomio por x+2, se tiene:

      $$\frac{1x^3+5x^2+7x+3}{x+2}=1x^2+3x+1+\frac{1}{x+2}$$

      Si se observa la figura que AB=1, CD=3 y EF=1 coinciden con los coeficientes del polinomio cociente; GH=1 es el resto de la división y BC=2 es término independiente del divisor. Para obtener una raíz debemos situar el punto C de forma que la construcción de segmentos perpediculares finalice en el punto H. No hay resto y la división es exacta.
      $$p(x)=1x^3+5x^2+7x+3=(x+1)^2(x+2)$$
      El polinomio tiene tres raíces (una de ellas doble) y se pueden obtener gráficamente.

      • Moviendo el punto azul se obtienen dos raíces diferentes.
      • Se puede ver o no la obtención de la otra raíz doble.
      • Moviendo el punto rojo se obtiene la segunda raíz doble.
      • Se puede ver la construcción 'paso a paso'.
      Desarrollando las potencias siguientes se observa que los coeficientes de los polinomios son los números combinatorios correspondientes al triángulo de Pascal.
      $$(x+1)^0=1$$
      $$(x+1)^2=1x^2+2x+1$$
      $$(x+1)^3=1x^3+3x^2+3x^1+1$$
      $$(x+1)^4=1x^4+4x^3+6x^2+4x+1$$
      $$(x+1)^5=1x^5+5x^4+10x^3+10x^2+5x+1$$
      Podemos obtener, de forma gráfica e iterativa, la solución de cada polinomio y mostrando los segmentos cuyos tamaños son los diferentes números combinatorios.

      • Se puede ver la construcción 'paso a paso'.

      viernes, 21 de enero de 2022

      Períodos de Pisano

      Leonardo de Pisa o Leonardo Pisano es conocido como Fibonacci, hijo de Bonacci, que era el apodo de su padre. De ahí el nombre de Períodos de Pisano a los obtenidos de la sucesión de Fibonacci.
      La operación módulo da el resto de una división entera: $$14 \mod 3 =2$$ donde 2 es el resto de dividir 14 entre 3.

      Para la sucesión de Fibonacci: $$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181...$$ la sucesión de restos, es siempre periódica: $$F_i \mod n$$
      • restos modulo 2: $$0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1...$$
      • restos modulo 3: $$0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1...$$
      • restos modulo 4: $$0,1,1,2,3,1,0,1,1,3,2,1,0,1,1,3,2,1,0,1,1,2,3,1...$$
      • restos modulo 5: $$0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2...$$
      • restos modulo 6: $$0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1...$$
      • restos modulo 7: $$0,1,1,2,3,5,1,6,1,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1...$$
      • restos modulo 8: $$0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1...$$
      • restos modulo 9: $$0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1...$$
      El período en función del divisor n se indica: $$\pi(n)$$ $$\pi(2)=3, \pi(3)=8,\pi(4)=6,\pi(5)=20$$ $$\pi(6)=24, \pi(7)=16, \pi(8)=12, \pi(9)=24$$ Conforme aumenta el valor del divisor, en general, tiende a aumentar el período. Salvo el caso de n=3 todos los períodos son un número par. Si dos números,m y n, son coprimos: $$\pi(m\cdot n)=\pi(m)\cdot\pi(n)\rightarrow \pi(3)\cdot\pi(4)=8\cdot 6=24=\pi(12)$$
      Para las potencias de 2:
      $$\pi(n)=\frac{3n}{2}\rightarrow \pi(2)=3, \pi(4)=6, \pi(8)=12$$
      Para las potencias de 5:
      $$\pi(n)=4n\rightarrow \pi(5)=20$$
      Considerando la sucesión de restos módulo 3, dibujamos en un circulo tres puntos equdiastantes correspondientes a los tres restos posibles. Siguiendo la sucesión, se une con un segmento cada punto de un término con el punto del término siguiente (en el caso de coincidir dos términos consecutivos no se traza ningún segmento). En la imagen se muestra como se completa la figura.
      En la imagen se muestran las figuras obtenidas para las sucesiones de módulo 2, 3,4,5,6,7,8 y 9.
      Nos fijamos en el número de ceros que tiene cada ciclo: 2(1), 3(2), 4(1), 5(4), 6(2), 7(2), 8(2) y 9(2). Si tiene 1 cero hay asimetría, si tiene 4 ceros tiene simetría y si tiene 2 ceros puede o no tener simetría.
      En el caso de módulo 10, el periodo es: $$\pi(10)=\pi(2)\cdot\pi(5)=3\cdot 20=60$$ y el ciclo tiene 4 ceros y por tanto la figura es es simétrica.

      • Se puede ver la construcción 'paso a paso'.
      Si nos fijamos en los términos de la sucesión de Fibonacci: ...8, 13, 21, 34, 55, 89,... las figuras obtenidas de los restos módulo 8, 21, 55 son idénticas y lo mismo ocurre con las figuras de los restos módulo 13, 34, 89.

      jueves, 25 de noviembre de 2021

      La disección de Dudeney

      En general, una disección geométrica consiste en cortar una figura geométrica dada, como un triángulo, un cuadrado u otra figura más compleja, en una serie de piezas que reordenadas dan lugar a otra figura geométrica. Como ejemplo de disección geométrica podemos mostrar la solución a uno de los problemas que el matemático recreativo británico Henry E. Dudeney (1857-1930) comenta en su libro Amusements in mathematics (1917). El problema consiste en saber cómo dividir un cuadrado en cuatro partes para generar una cruz griega, es decir, una cruz con los cuatro brazos iguales. Las soluciones mostradas en el libro, que podían realizarse con dos cortes, eran:
      La conocida como disección de Dudeney, de un triángulo equilátero en un cuadrado, aparece en el libro de Henry E. Dudeney, The Canterbury Puzzlescomo “el acertijo del mercero”:

      Enseñó [el mercero] un trozo de tela con forma de triángulo equilátero perfecto, como se ve en la ilustración y dijo: “¿Es alguno de vosotros diestro en el corte de género? Estimo que no. Cada hombre a su oficio, y el estudioso puede aprender del lacayo, y el sabio del necio. Mostradme, pues, si podéis, de qué manera puede cortarse este trozo de género en cuatro piezas, para que puedan reunirse y formar un cuadrado perfecto”.

      Proceso de disección propuesto por Dudeney a partir del triángulo equilátero ABC:
      • Marcar los puntos medios D y E de los AB y BC, respectivamente.
      • Prolongar el segmento AE hasta el puto F tal que EF=EB.
      • Marcar el punto medio G del segmento AF y trazar el arco de circunferencia de centro G y radio GF=AG.
      • Prolongar el segmento CB hasta que corte el arco de circunferencia en H.
      • Trazar el arco de circunferencia con centro E y radio EH hasta que corte el lado AC en J.
      • Determinar el punto K tal que JK=AD (=DB=BE=EC).
      • Trazar el segmento JE.
      • Trazar desde D y K los segmentos perpediculaes al segmento JE, dando lugar a los puntos L y M (los segmentos serían DL y KM).
      • Los polígonos de la disección son: 1. DBEL, 2. ADLJ, 3. JMK y 4. KMEC.
      • Se puede ver la obtención de la disección 'paso a paso'.
      • Moviendo las barras de desplazamiento se obtiene el cuadrado.

      domingo, 20 de junio de 2021

      Selectividad Ciencias-Curso 20/21

      A continuación aparecen los enunciados y las soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y de julio para el bachillerato de ciencias del curso 20/21.

      Enunciados y soluciones de junio
      Enunciados y soluciones de julio