martes, 26 de febrero de 2019

Los círculos gemelos del arbelos (II)

En Septiembre de 2014, Floor van Lamoen publicó su descubrimiento de un par de gemelos arquimedianos (círculos iguales construidos en un arbelos).

Sea el arbelos con un semicírculo de diámetro AB, mientras el punto C, móvil en AB, define dos semicírculos más pequeños de centros O1 y O2 en AC y CB respectivamente. Se trazan las perpendiculares a AB desde O1 y O2 que intersectan con el semícírculo mayor en D y E respectivamente. Los segmentos DA y DC intersectan con el semicírculo de centro O1 en F y G, respectivamente. Este segmento es el diámetro de un círculo arquimediano. De forma análoga se obtiene el segmento HK al intersectar EC y EB con el semicírculo de centro O2. Pues bien, este nuevo círculo arquimediano es 'gemelo' del obtenido anteriormente.

Se pueden mover los puntos A y B para modificar el segmento AB. Así mismo, al desplazar sobre ese segmento el punto C, se comprueba la igualdad de los círculos del arbelos. Desactivando el botón 'construcción' el arbelos toma el aspecto de un buho. Se puede observar la construcción 'paso a paso'.

miércoles, 2 de enero de 2019

Los círculos gemelos del arbelos (I)

En un arbelos hay dos círculos 'gemelos' que son tangentes al semicírculo mayor, a un semicírculo menor y al segmento vertical que divide al semicírculo mayor y es tangente a los semicírculos menores.

Sea el arbelos, construido sobre el segmento AB, de medidas:
$$ AB=1 \wedge AC=r, \rightarrow BC=1-r$$
Los radios de los círculos gemelos miden: $$ R=\frac{1}{2}r(1-r)$$
Observando la figura y aplicando el teorema de Pitágoras en los triángulos DFG y HEK se obtiene: $$DG=\frac{1}{2}r+R   \wedge  DF=\frac{1}{2}r-R \rightarrow GF=\sqrt{2rR}$$ $$KE=\frac{1}{2}(1-r)+R \wedge  HE=\frac{1}{2}(1-r)-R \rightarrow KH=\sqrt{2(1-r)R}$$
El punto G, centro de un círculo gemelo, tiene de coordenadas:
$$x_1=r-R=\frac{1}{2}r(1+r) \wedge y_1=\sqrt{2rR}=r\sqrt{1-r}$$
El punto K, centro del otro círculo gemelo, tiene de coordenadas:
$$x_2=r+R=\frac{1}{2}r(3-r) \wedge y_2=\sqrt{2(1-r)R}=(1-r)\sqrt{r}$$
Se pueden mover los puntos A y B para modificar el segmento AB. Así mismo, al desplazar sobre ese segmento el punto C, se comprueba la igualdad de los círculos del arbelos. Se puede observar la construcción 'paso a paso'.

lunes, 26 de noviembre de 2018

Algoritmo de Moessner

El algoritmo, propuesto por el matemático Alfred Moessner en 1951 (aunque el resultado sería demostrado por Oskar Perrone al año siguiente), permite obtener las sucesiones de potencias de números naturales (como por ejemplo, la sucesión de los cuadrados, 1, 4, 9, 16, 25,…) a partir de la sencilla sucesión de los números naturales (1, 2, 3, 4, 5,...). Este método, de gran belleza, aparece en el libro The book of numbers de los matemáticos John H. Conway y Richard K. Guy.

En la serie de los números naturales eliminamos los múltiplos de 2 (dejamos un número y eliminamos el siguiente), y con los números resultantes se hacen las sumas acumulativas, obteniendo los cuadrados de los números naturales.
Ahora eliminamos los múltiplos de 3 (dejamos dos números y eliminamos el siguiente). Con los números resultantes dejamos uno y eliminamos el siguiente. Finalmente, con los números resultantes se hacen las sumas acumulativas, obteniendo los cubos de los números naturales.
Ahora eliminamos los múltiplos de 4 (dejamos tres números y eliminamos el siguiente). Con los números resultantes dejamos dos y eliminamos el siguiente.Con los números resultantes dejamos uno y eliminamos el siguiente. Finalmente, con los números resultantes se hacen las sumas acumulativas, obteniendo las cuartas potencias de los números naturales. Y así sucesivamente...
Sin embargo, este tipo de construcción se puede aplicar a situaciones más generales aún. Por ejemplo, ¿qué ocurriría, en la construcción de Moessner, si en lugar de mantener fija la distancia entre los números eliminados, se fuese incrementando dicha distancia. Un primer caso podría ser que se incremente en una posición la distancia anterior entre los números eliminados. En este caso obtendríamos los factoriales de los números naturales.

sábado, 20 de octubre de 2018

Proporción cordobesa

En uno de los triángulos formados por dos radios de la circunferencia circunscrita al octógono y uno de sus lados se aplica el teorema del coseno: $$L^2=R^2+R^2-2·R·R·cos45^o =2R^2(1-\sqrt 2/2)=R^2(2-\sqrt2) $$ $$L=R\sqrt(2-\sqrt2) \rightarrow c=\frac{R}{L}=\frac{1}{\sqrt(2-\sqrt2)}=1.306562964 \ldots$$ La proporción obtenida entre el radio y el lado se denomina proporción cordobesa y la constante irracional de proporcionalidad se llama número cordobés.


Se pueden mover dos vértices del octógono inicial para modificar su posición y tamaño. También se pueden mover dos vértices del rectángulo cordobés para girarlo y desplazarlo. Se puede observar la construcción 'paso a paso'.

El número cordobés es una de las soluciones de la ecuación bicuadrada: $$2x^4-4x^2+1=0 \rightarrow 2z^2-4z+1 $$ $$z=\frac{4+\sqrt 8}{4}=1+\frac{1}{\sqrt 2}\rightarrow x=\sqrt{1+\frac{1}{\sqrt 2}}$$ $$c=\frac{1}{\sqrt(2-\sqrt2)}=\sqrt{\frac{1}{2-\sqrt 2}}=\sqrt{\frac{2+\sqrt 2}{2}}=\sqrt{1+\frac{1}{\sqrt 2}}$$
La proporción cordobesa representa la proporción humana frente a la proporción divina, representada por el número áureo. La armonía humana se materializa en la relación entre la distancia de la cabeza 
la cabeza hasta el ombligo y la distancia desde el ombligo a los pies. En la figura de la izquierda se observa la proporción cordobesa, mientras que en la figura de la derecha se muestra la proporción divina. Los actores griegos se calzaban los 'coturnos' para parecer más altos y así ajustarse a la proporción divina.
La proporción cordobesa, recibe su nombre al ser encontrada por primera vez en la geometría de la Mezquita de Córdoba, pero está presente también en otros muchos edificios, no necesariamente de la Córdoba Califal.

Fue Rafael de la Hoz Arderius (1924-2000), arquitecto cordobés, quien la introdujo en 1973  e hizo un estudio exhaustivo de su presencia. Su interés por la misma  le llevó a utilizarla en muchos de sus edificios proyectados.


viernes, 21 de septiembre de 2018

Punto de Spieker

En un triángulo cualquiera se traza el triángulo medial, el que tiene como vértices los puntos medios de sus lados. Obtenemos su incentro que es el denominado punto de Spieker (S). En el triángulo inicial se obtienen su incentro (I), su circuncentro (C) y su ortocentro (O). El punto simétrico del (I) respecto del circuncentro (C) es un punto (B). Pues bien, este punto (B) es también el simétrico del ortocentro (C) respecto del punto de Spieker.

Se pueden mover los vértices del triángulo inicial para comprobar la propiedad.  Se puede observar la construcción 'paso a paso'.

lunes, 6 de agosto de 2018

Números de Catalan

Fue el gran Leonhard Euler (1707-1783) la primera persona en calcular los denominados números de Catalan. Le comunicó los primeros valores a Johann Segner (1704-1777), pero no le dijo la técnica que utilizó para calcularlos. Segner obtiene estos números, por recurrencia,  al estudiar las posibles triangulación de un polígono.

Una triángulación de un polígono es una forma de descomponerlo como una unión disjunta de triángulos cuyos vértices coinciden con los del polígono. Es fácil ver que para triangular un polígono de n+2 vértices se necesitan n triángulos y viceversa.

Sea Cn el número de maneras de descomponer un polígono utilizando exactamente en triángulos. Como se observa en la imagen: $$C_1=1, C_2=2, C_3=5, C_4=14 $$
La fórmula de recurrencia, dada por Signer en 1758, para obtener los números de catalán es: $$C_{n+1}=C_0·C_n+C_1·C_{n-1}+C_2·C_{n-2}+\cdots+C_{n-1}·C_1+C_n·C_0$$ siendo $$C_0=1$$
Demostración por inducción:

Si sabemos triangular los polígonos de n+2 lados, entonces podemos triangular un polígono de n+3 lados.

El polígono tiene los vértices 1,2,3,...n+3 y escogemos un 'lado favorito': el lado de vértices 1 y n+3, que pertenece a un triángulo Tde la triangulación, siendo i el tercer vértice que pertenece al conjunto {2,3,...n+2}.

En la figura se observa que sería el triángulo de vértices 1,4 y 8.
En general, si se elimina ese triángulo Ti, resultan dos polígonos:
  • Vértices 1,2,...i que puede ser triangulado de Ci-2 maneras.
  • Vértices i,i+1,,...n+3 que puede ser triangulado de Cn-i+2 maneras.
Ambas elecciones son independientes, por tanto la manera de triangular el polígono que contiene al triángulo Ti es:
$$C_{i-2}·C_{n-i+2}$$
Al variar Ti sobre todos los valores posibles {2,3...n+2} se obtiene la fórmula.

Alrededor de un siglo después Eugène Catalan (1814-1894), volverá a calcular el número de maneras de triangular un polígono. En su memoria, esos números  llevan  su nombre.

Es una fórmula que evita la recurrencia y permite obtener directamente los números:
$$C_n=\frac{1}{n+1} \binom{2n}{n}=\frac{(2n)!}{(n+1)!·n!} \wedge n\geq 0$$
A partir de esta fórmula se puede obtener una fórmula de recurrencia más sencilla:
$$\frac{C_{n+1}}{C_n}=\frac{(2n+2)!}{(n+2)!(n+1)!}:\frac{(2n)!}{(n+1)!n!}=\frac{2(2n+1)}{n+2}$$
$$C_{n+1}=\frac{2(2n+1)}{n+2}{C_n}\wedge n\geq 1$$
Existen infinidad de situaciones en las que aparecen los números de Catalan. Una de ellas es el número de caminos monótonos crecientes a través de una retícula de tamaño nxn y que no atraviesen la diagonal:
Las aplicaciones sucesivas de un operador binario pueden representarse con un árbol binario. 
En este caso, Cn es el número de árboles binarios de n + 1 hojas, en los que cada nodo tiene cero o dos hijos:

En su página de internet Richard Stanley, nos reta con 95 familias de objetos enumerados por los números de Catalan.

sábado, 23 de junio de 2018

Selectividad ciencias-Curso 17/18

A continuación aparecen los enunciados y las soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y de julio para el bachillerato de ciencias del curso 17/18.

Enunciados y soluciones de junio
Enunciados y soluciones de julio

miércoles, 20 de junio de 2018

Selectividad ciencias sociales-Curso 17/18

A continuación aparecen los enunciados y las soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y de julio para el bachillerato de ciencias del curso 16/17.

Enunciados y soluciones de junio
Enunciados y soluciones de julio

martes, 29 de mayo de 2018

El problema de la dote del sultán

Un sultán tiene 100 hijas y decide dar la mano de una de ellas al súbdito que supere la siguiente prueba: Cada hija desfilará delante del pretendiente indicando la dote que tiene asignada. El súbdito sólo podrá casarse con la hija de mayor dote si adivina cuál de ellas es. Para ello debe decidir si la elige o prefiere continuar viendo el resto. Una vez rechazada una de las hijas, la decisión no se  puede cambiar. Se supone que todas las dotes son distintas y que no tiene información previa sobre su cuantía.

¿Cuál es la mejor estrategia para superar la prueba?

Una estrategia es dejar pasar n hijas y después elegir aquella que tenga una dote que supere a todas las precedentes (incluidas las n primeras).  ¿Cuál es el número n que maximiza la probabilidad de elgir la dote más alta?
Supongamos que hay 3 hijas, cuyas dotes se numeran de mayor (1) a menor (3). En la tabla se muestran las diferentes ordenaciones y para qué valor de n se obtiene la dote mayor. Se observa que cuando se descarta una hija, se consigue la mayor dote en tres casos: p(n=1)=3/6=1/2.

La probabilidad de acertar con N hijas habiendo rechazado las n primeras es:
$$\frac{1}{N} \frac{n}{n+k}$$
ya que acertamos si la mayor está en el puesto n+1, que ocurre con probabilidad 1/N. También si la mayor está en el puesto n+k+1 que ocurre con probabilidad 1/N y la mayor de las n+k precedentes está entre las n primeras, que ocurre con probabilidad n/(n+k).

La probabilidad de acertar es la suma de estas probabilidades extendidas a todos los valores posibles de k, desde 0 hasta N-n-1: $$p=\frac{n}{N} \left( \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+ \ldots +\frac{1}{N-1} \right)$$ 
Teniendo en cuenta la serie armónica:
$$H_n=1+\frac{1}{2}+\frac{1}{3}+\ldots + \frac{1}{n}$$
la probabilidad de acertar se puede expresar:
$$p=\frac{n}{N} \left(H_{N-1} - H_{n-1}\right)$$
Y como la serie armónica se puede aproximar con la fórmula que utiliza la constante de Euler-Mascheroni: $$H_n=ln(n)+\gamma$$ la probabilidad de éxito será: $$p=-\frac{n}{N}ln\left(\frac{n-1}{N-1}\right)$$
Cuando N y n son grandes, se puede aproximar a: $$p=-\frac{n}{N}ln\left(\frac{n}{N}\right)=-\alpha ln(\alpha)$$ Optimizando se obtiene: $$\alpha=\frac{n}{N}=\frac{1}{e}=0,3679\ldots$$ y por tanto habría que dejar pasar el 36,79% de las hijas antes de empezar a elegir una de ellas.

Descargar .XLS
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Con las flechas se elige el número de novias descartadas n.
  • Con el botón 'elige' se muestran las siguientes dotes, deteniéndose si una dote supera a las anteriores y se habilita el botón 'comprobar'.
  • El botón 'comprobar' muestra las dotes ocultas y se comprueba si ha habido éxito.
  • Con las flechas se elige el número de novias N y el número de novias descartadas n.
  • Se observa numérica y gráficamente las probabilidades de éxito para cada supuesto.

sábado, 28 de abril de 2018

Curva del pez

Se traza una circunferencia de radio AB. En la circunferencia el punto B es fijo y el punto C es variable. Se traza una circunferencia de centro C y radio AB+k·BC. Este radio varía al desplazarse C. La parelela al radio AB por C determina un diámetro DE. Al desplazar el punto C,  los puntos D y E se desplazan obteniéndose un lugar geométrico en forma de pez.

Al mover el punto C de la circunferencia, los puntos D y E recorren el lugar geométrico. Al desplazar A y B podemos modificar la circunferencia. El deslizador permite fijar el valor deseado de k. Se puede observar la construcción 'paso a paso'.