sábado, 28 de febrero de 2015

Punto de Vecten (II)


Dado un  triángulo se construye un cuadrado interior sobre cada lado. Las rectas que pasan por los centros de los cuadrados y por los vértices opuestos a los lados sobre los que están construidos, se cortan en el 2º punto de Vecten.

miércoles, 28 de enero de 2015

Punto de Vecten (I)

Dado un triángulo se construye un cuadrado exterior sobre cada lado.  Los segmentos que unen los centros de los cuadrados con los vértices opuestos a los lados sobre los que están construidos, se cortan en el 1º punto de Vecten.

martes, 30 de diciembre de 2014

Teorema de Ceva

Dado un  triángulo ABC y los puntos D, E y F sobre los lados AB, BC y CA respectivamente, los segme4ntos AD, BF y CD son concurrentes si y sólo si los segmentos determinados sobre los lados cumplen la relación:
$$\frac{AD}{DB} \cdot \frac{EB}{EC} \cdot \frac{FC}{FA}=1$$

jueves, 27 de noviembre de 2014

El teorema del jurado de Condorcet

Para Condorcet, matemático, filósofo y político francés del siglo XVIII, el objetivo de un buen gobierno es tomar las decisiones que sean mejores para la sociedad. Sea un grupo de n personas que necesitan decidir si una proposición es verdadera o falsa. Por ejemplo, para un jurado si el acusado es culpable o inocente.
Supongamos que cada votante tiene una probabilidad p de acertar la proposición. Se consideran a los votantes competentes si p>0.5. Se desea tomar una decisión por mayoría y que sea correcta. ¿Qué ocurre según sea el valor de p?
$$p > 0.5$$ La probabilidad de que la decisión sea correcta es mayor si aumenta el número de votantes. En el límite, cuando n tiende a infinito, la probabilidad de que la decisión sea la correcta tiende a 1. Es mejor tomar la opinión de muchos que de uno. 

¡Cuantos más competentes mejor! 
$$p < 0.5$$ La probabilidad de que la decisión sea correcta es menor si aumenta el número de votantes. En el límite tiende a 0. Es mejor tomar la opinión de uno. 

¡Cuantos más incompetentes peor!

La probabilidad de acertar m o más votantes es: $$f(p)=\sum_{k=m}^{n} \binom {n}{k}p^k(1-p)^{n-k}$$ Se asume que la competencia o incompetencia de cada votante es la misma. Simplificación que no afecta a las conclusiones. Sin embargo, como la gente intercambia opiniones, la independencia de cada votante es un criterio muy fuerte y no muy realista.


Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede modificar el número de votantes n y la probabilidad de acertar cada votante p 
  • Se puede modificar el porcentaje de votos afirmativos necesarios q para aceptar la propuesta  (para que la mayoría pueda ser cualificada).
  • Se muestran la probabilidad de que se acepte la propuesta f(p) en función de p, el número de votantes necesarios para ello m y la gráfica correspondiente.
Descargar .XLS

miércoles, 29 de octubre de 2014

El juego de la tarta

Cada jugador debe rellenar su molde circular utilizando tres porciones de tarta. Se van colocando alternativamente y gana el primero que completa la tarta.
La tarta está formada por 15 sectores de 24º cada uno. Las porciones van de 1 sector  hasta 9 sectores. 



Se desplazan los sectores moviendo los puntos centrales y se giran los sectores moviendo los puntos extremos.

martes, 30 de septiembre de 2014

Teorema de Stewart

Si en un triángulo ABC se traza una ceviana (segmento que une el vértice A con el lado opuesto BC), el punto de intersección D determina dos segmentos de longitudes m y n. Si d es la longitud de la ceviana y a, b, c las longitudes de los lados del triángulo, se cumple el teorema de Stewart:
$$d^2·a=n·b^2+m·c^2-n·m·a$$
Si d es la longitud de la mediana, entonces se verifica el teorema de Apolonio o teorema de la mediana:
$$b^2+c^2=\frac{a^2}{2}+2·d^2$$

viernes, 19 de septiembre de 2014

Teorema de Routh

Este teorema fue demostrado por primera vez por William George Horner además de otros como Coxeter, Shklyarsky y Greitzer. Su nombre, como puede apreciarse en la figura, proviene del aspecto final de la construcción que exige el enunciado.

Si el punto E es el punto medio de la cuerda CD de una circunferencia y FG y HI son cuerdas que pasan por E, entonces el punto E es también el punto medio del segmento JK, donde J y K son los puntos de intersección de las cuerdas FI y HG respectivamente, con la cuerda CD.

martes, 26 de agosto de 2014

Puntos de Brocard

En un triángulo ABC se construyen las circunferencias siguientes:
  • Pasa por A y es tangente a BC en B
  • Pasa por B y es tangente a CA en C
  • Pasa por C y es tangente a AB en A

Las tres circunferencias pasan por un mismo punto M llamado punto positivo de Brocard.

Análogamente se construyen otras tres circunferencias:
  • Pasa por A y es tangente a BC en C
  • Pasa por B y es tangente a CA en A
  • Pasa por C y es tangente a AB en B
Las tres circunferencias pasan por un mismo punto N llamado punto negativo de Brocard.

Además si se trazan las cuerdas que unen los puntos M  y N con los vértices del triángulo, se cumple la siguiente igualdad de ángulos:

ACM=BAM=CBM=ABN=BCN=CAN

Estas cuerdas reciben el nombre de primeros y segundos rayos de Brocard, respectivamente.

sábado, 2 de agosto de 2014

Teorema de la mariposa

Este teorema fue demostrado por primera vez por William George Horner además de otros como Coxeter, Shklyarsky y Greitzer. Su nombre, como puede apreciarse en la figura, proviene del aspecto final de la construcción que exige el enunciado.

Si el punto E es el punto medio de la cuerda CD de una circunferencia y FG y HI son cuerdas que pasan por E, entonces el punto E es también el punto medio del segmento JK, donde J y K son los puntos de intersección de las cuerdas FI y HG respectivamente, con la cuerda CD.

miércoles, 23 de julio de 2014

Selectividad de ciencias sociales - Curso 13/14

A continuación aparecen los enunciados y soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y julio para el bachillerato de ciencias sociales del curso 13/14.

Enunciados y soluciones de junio

Enunciados y soluciones de julio