jueves, 27 de noviembre de 2014

El teorema del jurado de Condorcet

Para Condorcet, matemático, filósofo y político francés del siglo XVIII, el objetivo de un buen gobierno es tomar las decisiones que sean mejores para la sociedad. Sea un grupo de n personas que necesitan decidir si una proposición es verdadera o falsa. Por ejemplo, para un jurado si el acusado es culpable o inocente.
Supongamos que cada votante tiene una probabilidad p de acertar la proposición. Se consideran a los votantes competentes si p>0.5. Se desea tomar una decisión por mayoría y que sea correcta. ¿Qué ocurre según sea el valor de p?
$$p > 0.5$$ La probabilidad de que la decisión sea correcta es mayor si aumenta el número de votantes. En el límite, cuando n tiende a infinito, la probabilidad de que la decisión sea la correcta tiende a 1. Es mejor tomar la opinión de muchos que de uno. 

¡Cuantos más competentes mejor! 
$$p < 0.5$$ La probabilidad de que la decisión sea correcta es menor si aumenta el número de votantes. En el límite tiende a 0. Es mejor tomar la opinión de uno. 

¡Cuantos más incompetentes peor!

La probabilidad de acertar m o más votantes es: $$f(p)=\sum_{k=m}^{n} \binom {n}{k}p^k(1-p)^{n-k}$$ Se asume que la competencia o incompetencia de cada votante es la misma. Simplificación que no afecta a las conclusiones. Sin embargo, como la gente intercambia opiniones, la independencia de cada votante es un criterio muy fuerte y no muy realista.


Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede modificar el número de votantes n y la probabilidad de acertar cada votante p 
  • Se puede modificar el porcentaje de votos afirmativos necesarios q para aceptar la propuesta  (para que la mayoría pueda ser cualificada).
  • Se muestran la probabilidad de que se acepte la propuesta f(p) en función de p, el número de votantes necesarios para ello m y la gráfica correspondiente.
Descargar .XLS

miércoles, 29 de octubre de 2014

El juego de la tarta

Cada jugador debe rellenar su molde circular utilizando tres porciones de tarta. Se van colocando alternativamente y gana el primero que completa la tarta.
La tarta está formada por 15 sectores de 24º cada uno. Las porciones van de 1 sector  hasta 9 sectores. 



Se desplazan los sectores moviendo los puntos centrales y se giran los sectores moviendo los puntos extremos.

martes, 30 de septiembre de 2014

Teorema de Stewart

Si en un triángulo ABC se traza una ceviana (segmento que une el vértice A con el lado opuesto BC), el punto de intersección D determina dos segmentos de longitudes m y n. Si d es la longitud de la ceviana y a, b, c las longitudes de los lados del triángulo, se cumple el teorema de Stewart:
$$d^2·a=n·b^2+m·c^2-n·m·a$$
Si d es la longitud de la mediana, entonces se verifica el teorema de Apolonio o teorema de la mediana:
$$b^2+c^2=\frac{a^2}{2}+2·d^2$$

viernes, 19 de septiembre de 2014

Teorema de Routh

Este teorema fue demostrado por primera vez por William George Horner además de otros como Coxeter, Shklyarsky y Greitzer. Su nombre, como puede apreciarse en la figura, proviene del aspecto final de la construcción que exige el enunciado.

Si el punto E es el punto medio de la cuerda CD de una circunferencia y FG y HI son cuerdas que pasan por E, entonces el punto E es también el punto medio del segmento JK, donde J y K son los puntos de intersección de las cuerdas FI y HG respectivamente, con la cuerda CD.

martes, 26 de agosto de 2014

Puntos de Brocard

En un triángulo ABC se construyen las circunferencias siguientes:
  • Pasa por A y es tangente a BC en B
  • Pasa por B y es tangente a CA en C
  • Pasa por C y es tangente a AB en A

Las tres circunferencias pasan por un mismo punto M llamado punto positivo de Brocard.

Análogamente se construyen otras tres circunferencias:
  • Pasa por A y es tangente a BC en C
  • Pasa por B y es tangente a CA en A
  • Pasa por C y es tangente a AB en B
Las tres circunferencias pasan por un mismo punto N llamado punto negativo de Brocard.

Además si se trazan las cuerdas que unen los puntos M  y N con los vértices del triángulo, se cumple la siguiente igualdad de ángulos:

ACM=BAM=CBM=ABN=BCN=CAN

Estas cuerdas reciben el nombre de primeros y segundos rayos de Brocard, respectivamente.

sábado, 2 de agosto de 2014

Teorema de la mariposa

Este teorema fue demostrado por primera vez por William George Horner además de otros como Coxeter, Shklyarsky y Greitzer. Su nombre, como puede apreciarse en la figura, proviene del aspecto final de la construcción que exige el enunciado.

Si el punto E es el punto medio de la cuerda CD de una circunferencia y FG y HI son cuerdas que pasan por E, entonces el punto E es también el punto medio del segmento JK, donde J y K son los puntos de intersección de las cuerdas FI y HG respectivamente, con la cuerda CD.

miércoles, 23 de julio de 2014

Selectividad de ciencias sociales - Curso 13/14

A continuación aparecen los enunciados y soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y julio para el bachillerato de ciencias sociales del curso 13/14.

Enunciados y soluciones de junio

Enunciados y soluciones de julio

lunes, 21 de julio de 2014

Selectividad de ciencias - Curso 13/14

A continuación aparecen los enunciados y las soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y de julio para el bachillerato de ciencias del curso 13/14.

Enunciados y soluciones de junio
Enunciados y soluciones de julio

jueves, 5 de junio de 2014

Nadal VS Federer

Supongamos que un jugador de tenis (Rafa Nadal) tiene una probabilidad p de ganar un point a su contrincante (Roger Federer). La probabilidad de que pierda será q, siendo p+q=1. ¿Qué probabilidad tendrá de ganar un game? ¿Y un set? ¿Y un match?

En una serie de tablas se muestran las posibles evoluciones de un game, un tie-break, un set con tie-break, un set sin tie-break y un match.
Las celdas con números en rojo corresponden a momentos de ventaja de Nadal, las celdas con números en azul indican situaciones de ventaja de Federer y las que tienen los números en negro indican situaciones de empate. Las celdas con los números en negrita indican situación de ganador de alguno de ellos.

Probabilidad de ganar un game:

Los números de la tabla recogen las distintas posibilidades de alcanzar un tanteo concreto. La celda con el 2 corresponde al tanteo 15-15 e indica que se puede alcanzar ese resultado de dos formas distintas: 15-0 ->15-15 o bien 0-15 -> 15-15. Se observa que cada celda es la suma de la celda de su izquierda y de su celda superior (siempre que existan ambas). Sabemos que en tenis se han de conseguir dos puntos de diferencia para adjudicarse el juego y conseguir al menos cuatro points.
De acuerdo con la tabla y teniendo en cuenta la probabilidad p de conseguir un point:
$$p(game)=p^4+4p^4q+10p^4q^2+^20p^5q^3+40p^6q^3+80p^7q^3+\cdots$$
$$p(game)=p^4+4p^4q+10p^4q^2(1+2pq+4p^2q^2+8p^3q^3+\cdots)$$
$$p(game)=p^4+4p^4q+\frac{10p^4q^2}{1-2pq}$$

Probabilidad de ganar un tie-break:

Un tie-break es una forma de terminar un game de manera más rápida. Si se llega a un empate a 6 games, se juega un último game de desempate que se consigue con 7 points con diferencia de dos. En caso contrario se siguen jugando points hasta conseguir esa diferencia.

De acuerdo con la tabla y teniendo en cuenta la probabilidad p de conseguir un point:
$$p(tie-break)=p^7+7p^7q+28p^7q^2+84p^7q^3+210p^7q^4+\frac{462p^7q^5}{1-2pq}$$
Probabilidad de ganar un set sin tie-break:

Un set se consigue con 6 games y una diferencia de dos. En caso de no conseguir esa diferencia con 6 games, se debe continuar hasta conseguirla.
De acuerdo con la tabla y teniendo en cuenta la probabilidad de conseguir un game:
$$p(set)=p^6+6p^6q+21p^6q^2+56p^6q^3+\frac{126p^6q^4}{1-2pq}$$
Probabilidad de ganar un set con  tie-break:


Un set se consigue con 6 games y una diferencia de dos. En caso de llegar a empate a 6 games se juega un tie-break.

De acuerdo con la tabla y teniendo en cuenta la probabilidad p de conseguir un game y un  tie-break:
$$p(set)=p^6+6p^q+21p^6q^2+56p^6q^3+126p^6q^4+252p^7q^5+504p^6q^6P$$
 siendo P la probabilidad de tie-break.

Probabilidad de ganar un match:

Un match se consigue ganando 3 setsEn caso de empate a 2 sets el último se juega con tie-breakHay competiciones en que es suficiente ganar 2 sets y el set de desempate también es con tie-break.
De acuerdo con la tabla y teniendo en cuenta la probabilidad p de conseguir un set:
$$p(match)=p^3+3p^3q+6p^2q^2P$$
siendo P la probabilidad de set con tie-break.


Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede elegir la probabilidad de ganar un point.
  • Se obtienen las probabilidades de ganar un game, un set sin tie-break, un tie-break, un set con tie-break y un match.
  • Las gráficas representan las probabilidades anteriores en función de la probabilidad de ganar un point

Descargar .XLS
  • Basado en el capítulo El tenista ebrio del libro Ingeniosos encuentros entre juegos y matemática de Ian Stewart.

sábado, 17 de mayo de 2014

Movimiento armónico amortiguado

La hipótesis de que el rozamiento no tenga influencia en el movimiento armónico de un punto unido a un muelle o de un péndulo raramente se produce en la práctica. La experiencia enseña que el medio en el que oscila el punto se opone a dichas oscilaciones con una fuerza llamada resistencia viscosa, que en la mayoría de los casos es proporcional a la velocidad del punto, siendo b el coeficiente de rozamiento del medio.
$$R=-bv$$

Por tanto la ley de Newton aplicada a un punto de masa m unido a un muelle de elasticidad k será sobre el eje x:
$$-kx-bx'=mx'$$
$$x'+\frac{b}{m}x'+\frac{k}{m}=0$$
Esta ecuación diferencial tiene como solución:
$$x=Ae^{- \frac{b}{2m}}cos(\sqrt{\frac{k}{m}-\frac{b^2}{4m^2}}t+\phi)$$
El coeficiente de amortiguamiento es:
$$\alpha=\frac{b}{2m}$$
La pulsación o frecuencia angular es:
$$\omega=\sqrt{\frac{k}{m}-\frac{b^2}{4m^2}}$$
Se define el factor de calidad:
$$Q=\sqrt{\frac{km}{b}}$$
y es igual a $$2·\pi$$ veces el inverso de las pérdidas de energía por período. Si b=0, entonces se obtiene el movimiento armónico clásico.


Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede elegir el valor de la elasticidad, la masa, la amplitud inicial, el desfase y el coeficiente de rozamiento.
  • Se obtienen la pulsación,el coeficiente de amortiguamiento y el factor de calidad.
  • Las gráficas representan la posición y la velocidad, las energías cinética y potencial y el espacio de fases v-x a lo largo del tiempo.
  • Al modificar el instante de tiempo se muestran los valores de la posición, velocidad, energía cinética, energía potencial y energía total.
Descargar .XLS