lunes, 11 de mayo de 2015

Teorema de Routh (II)

En un triángulo cualquiera cada lado se divide en 3 segmentos iguales y el punto origen del tercer segmento se une al vértice opuesto a ese lado. Estos segmentos se intersectan formando un triángulo interior. El área de este triángulo es 1/7 del área del triángulo incial.
Es un caso particular del Teorema de Routh:
Si en un triángulo se trazan las cevianas (segmento que une un vértice con el lado opuesto), si r, s y t son las razones entre los segmentos determinados por las cevianas en cada un de los lados, entonces se cumple:

$$\frac{Area ABC}{Area OXY}=\frac{(rst-1)^2}{(rs+t+1)(rt+s+1)(st+r+1)}$$

Se puede comprobar que se obtiene el valor 1/7 cuando r=s=t=1/3.

martes, 21 de abril de 2015

Método de Kochanski

Es un método geométrico para obtener un valor aproximado del número pi:

  • Se dibuja una circunferencia de radio unitario.
  • Se inscribe un triángulo equilátero ABC.
  • Se traza la mediatriz del lado AB, que intersecta en I y en H.
  • Se traza la paralela al lado AB por I, que intersecta a la prolongación del lado AC en D.
  • A partir de este punto se transportan el radio unitario 3 veces sobre la recta: DE=EF=FG=1.
  • El segmento GH mide pi.

Demostración: $$GH^2=HI^2+\left (3-DI \right) ^2$$
$$CJ=\sqrt{1-\left(\frac{1}{2}\right)^2}=\frac{\sqrt{3}}{2}$$
$$\frac{DI}{AJ}=\frac{CI}{CJ} \rightarrow \frac{DI}{\frac{1}{2}}=\frac{1}{\frac{\sqrt{3}}{2}} \rightarrow DI=\frac{\sqrt{3}}{3}$$
$$GH=\sqrt{2^2+\left(3-\frac{\sqrt{3}}{3}\right)^2}=3.1415$$

martes, 17 de marzo de 2015

La distribución normal

Es la distribución de probabilidad continua más importante. Recibe su nombre por la frecuencia en que aparece en situaciones muy diversas. De hecho, al principio se pensaba que todos los fenómenos aleatorios seguían una distribución normal.
 La función densidad de la distribución normal de media y desviación típica dadas es:
$$f(x)=\frac{1}{\sigma \sqrt{2\pi }}e^{-\frac{1}{2}\left ( \frac{x-\mu }{\sigma } \right )^{2}}$$
Cuando la media es 0 y la desviación típica 1, se obtiene la distribución normal estándar N(0,1) que está tabulada:
$$f(x)=\frac{1}{\sqrt{2\pi }}e^{-\frac{1}{2}x^{2}}$$
Para calcular las probabilidades de una distribución normal cualquiera se debe pasar a la N(0,1), es decir, tipificar la variable mediante el cambio:
$$z=\frac{x-\mu}{\sigma}$$
Abraham de De Moivre demostró, que en determinadas condiciones, la distribución binomial se puede aproximar mediante la distribución normal:
$$B(n,p)\rightarrow N(np,\sqrt{npq})$$
Esa aproximación es admisble si se verifican las desigualdades:
$$np\geq 5\wedge nq\geq 5$$
Al utilizar una variable continua para una variable discreta, se comete un error que se corrige modificando el intervalo  que se quiere calcular (correción de Yates).
$$p(a\leq x\leq b)=p(a-0.5\leq x'\leq b+0.5)$$
En una binomial la probabilidad de alcanzar hasta k éxitos es:
$$\sum_{n=0}^{k}\binom{n}{k}p^{k}q^{n-k}$$

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede introducir la media y la d. típica de la distribución normal, Con las flechas elegir los extremos del intervalo y obtener la probabilidad. La región bajo la curva se muestra en la gráfica,
  • Elegir con las flechas el percentil y obtener el valor de la variable aleatoria correspondiente.
  • En la Binomial, se puede fijar con las flechas el valor de la probabilidad de éxito y el número de pruebas. Se obtiene la media y la d. típica de la normal.
  • Se puede obtener la probabilidad de obtener hasta k éxitos en una binomial y compararla con la aproximación normal. Se muestra la correción de Yates.
Descargar .XLS

sábado, 28 de febrero de 2015

Punto de Vecten (II)


Dado un  triángulo se construye un cuadrado interior sobre cada lado. Las rectas que pasan por los centros de los cuadrados y por los vértices opuestos a los lados sobre los que están construidos, se cortan en el 2º punto de Vecten.

miércoles, 28 de enero de 2015

Punto de Vecten (I)

Dado un triángulo se construye un cuadrado exterior sobre cada lado.  Los segmentos que unen los centros de los cuadrados con los vértices opuestos a los lados sobre los que están construidos, se cortan en el 1º punto de Vecten.

martes, 30 de diciembre de 2014

Teorema de Ceva

Dado un  triángulo ABC y los puntos D, E y F sobre los lados AB, BC y CA respectivamente, los segme4ntos AD, BF y CD son concurrentes si y sólo si los segmentos determinados sobre los lados cumplen la relación:
$$\frac{AD}{DB} \cdot \frac{EB}{EC} \cdot \frac{FC}{FA}=1$$

jueves, 27 de noviembre de 2014

El teorema del jurado de Condorcet

Para Condorcet, matemático, filósofo y político francés del siglo XVIII, el objetivo de un buen gobierno es tomar las decisiones que sean mejores para la sociedad. Sea un grupo de n personas que necesitan decidir si una proposición es verdadera o falsa. Por ejemplo, para un jurado si el acusado es culpable o inocente.
Supongamos que cada votante tiene una probabilidad p de acertar la proposición. Se consideran a los votantes competentes si p>0.5. Se desea tomar una decisión por mayoría y que sea correcta. ¿Qué ocurre según sea el valor de p?
$$p > 0.5$$ La probabilidad de que la decisión sea correcta es mayor si aumenta el número de votantes. En el límite, cuando n tiende a infinito, la probabilidad de que la decisión sea la correcta tiende a 1. Es mejor tomar la opinión de muchos que de uno. 

¡Cuantos más competentes mejor! 
$$p < 0.5$$ La probabilidad de que la decisión sea correcta es menor si aumenta el número de votantes. En el límite tiende a 0. Es mejor tomar la opinión de uno. 

¡Cuantos más incompetentes peor!

La probabilidad de acertar m o más votantes es: $$f(p)=\sum_{k=m}^{n} \binom {n}{k}p^k(1-p)^{n-k}$$ Se asume que la competencia o incompetencia de cada votante es la misma. Simplificación que no afecta a las conclusiones. Sin embargo, como la gente intercambia opiniones, la independencia de cada votante es un criterio muy fuerte y no muy realista.


Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede modificar el número de votantes n y la probabilidad de acertar cada votante p 
  • Se puede modificar el porcentaje de votos afirmativos necesarios q para aceptar la propuesta  (para que la mayoría pueda ser cualificada).
  • Se muestran la probabilidad de que se acepte la propuesta f(p) en función de p, el número de votantes necesarios para ello m y la gráfica correspondiente.
Descargar .XLS

miércoles, 29 de octubre de 2014

El juego de la tarta

Cada jugador debe rellenar su molde circular utilizando tres porciones de tarta. Se van colocando alternativamente y gana el primero que completa la tarta.
La tarta está formada por 15 sectores de 24º cada uno. Las porciones van de 1 sector  hasta 9 sectores. 



Se desplazan los sectores moviendo los puntos centrales y se giran los sectores moviendo los puntos extremos.

martes, 30 de septiembre de 2014

Teorema de Stewart

Si en un triángulo ABC se traza una ceviana (segmento que une el vértice A con el lado opuesto BC), el punto de intersección D determina dos segmentos de longitudes m y n. Si d es la longitud de la ceviana y a, b, c las longitudes de los lados del triángulo, se cumple el teorema de Stewart:
$$d^2·a=n·b^2+m·c^2-n·m·a$$
Si d es la longitud de la mediana, entonces se verifica el teorema de Apolonio o teorema de la mediana:
$$b^2+c^2=\frac{a^2}{2}+2·d^2$$

viernes, 19 de septiembre de 2014

Teorema de Routh (I)

En un triángulo cualquiera se trazan tres cevianas (segmento que une un vértice con el lado opuesto). Estas cevianas se cortan en tres puntos que determinan un nuevo triángulo. El producto de las razones de los segmentos determinados en cada lado por las cevianas se mantiene constante, al modificar el tríángulo inicial, siempre que no se desplacen los puntos determinados en los lados por las cevianas.


Se puede modificar el triángulo exterior desplazando los vértices A, B y C y observar la propiedad.
Con las flechas se puede observar la construcción "paso a paso".