jueves, 17 de noviembre de 2022

Sucesiones de 'Somos'

Estas sucesiones deben su nombre a su creador, el matemático americano Michael Somos.

 Con la relación de recurrencia: $$a_n=a_{n-1} \wedge a_0=1$$ se obtiene la sucesión Somos-1: $$1,1,1,1,1,\ldots$$
Con la relación de recurrencia:
$$a_n=\frac{a_{n-1}^2}{a_{n-2}} \wedge a_0,a_1=1$$ se obtiene la sucesión Somos-2: $$1,1,1,1,1,\ldots$$
Con la relación de recurrencia:
$$a_n=\frac{a_{n-1}a_{n-2}}{a_{n-3}} \wedge a_0,a_1,a_2=1$$ se obtiene la sucesión Somos-3: $$1,1,1,1,1,\ldots$$
Vemos que los elementos semilla de la sucesión son siempre 1 y que el número de éstos coincide con el orden de la sucesión y que todas la sucesiones son iguales.
Con la relación de recurrencia:
$$a_n=\frac{a_{n-1}a_{n-3}+a_n^2}{a_{n-4}} \wedge a_0,a_1,a_2,a_3=1$$
 se obtiene la sucesión Somos-4
$$1,1,1,1,1,2,7,23,59,314,1529,8209,83313,620297,7869898\ldots$$
Se observa que la sucesión crece muy rápido pero siempre con valores enteros a pesar que en la fórmula de recurrencia hay un denominador.
Con la relación de recurrencia:
$$a_n=\frac{a_{n-1}a_{n-4}+a_{n-2}a_{n-3}}{a_{n-5}} \wedge a_0,a_1,a_2,a_3,a_4=1$$ se obtiene la sucesión Somos-5:
$$1,1,1,1,1,2,3,5,11,37,83,274,1217,6161,22823,165713 \ldots$$
La sucesión Somos-6 es:
$$1,1,1,1,1,1,3,5,9,23,75,37,421,1103,5047,41873,281527 \ldots$$
La sucesión Somos-7 es:
$$1,1,1,1,1,1,,3,5,9,17,41,137,769,1925,7203,340821 \ldots$$
Vemos que estas sucesiones siguen dando siempre valores enteros. ¿Se romperá esto alguna vez y aparecerá un número fraccionario?
Con la relación de recurrencia:
$$a_n=\frac{a_{n-1}a_{n-7}+a_{n-2}a_{n-6}+a_{n-3}a_{n-5}+a_{n-4}^2a}{a_{n-8}} \wedge a_0,a_1,a_2,a_3,a_4,a_5=1$$
se obtiene la sucesión Somos-8:
$$1,1,1,1,1,1,1,1,4,7,13,25,61,187,775,5827,14815, \ldots$$
Calculamos el siguiente término:
$$a_{17}=\frac{a_{16}a_{10}+a_{15}a_{11}+a_{14}a_{12}+a_{13}^2}{a_9}=$$ $$\frac{14815\cdot 13+5827 \cdot 25+775 \cdot 61+ 187^2}{7}=\frac{420514}{7}$$
Hemos tenido que llegar a es término de Somos-8 para que aparezca un número no entero. 
 Todas estas sucesiones se deducen de una fórmula general: $$a_n=\frac{\sum_{i=1}^{\lfloor k/2 \rfloor}a_{n-i}a_{n-(k-i)}}{a_{n-k}}$$ $$a_i=1 \hspace{0.5 cm}i=0,\ldots k-1$$ El símbolo superior del sumatorio indica 'parte entera'. Las siguientes sucesiones Somos obtienen el primer término fraccionario en posiciones cada vez más avanzadas: $$k=9,10,11, 12,13,14,15, \ldots \rightarrow a_{19},a_{20},a_{22},a_{24},a_{27},a_{28},a_{30},\ldots$$

lunes, 10 de octubre de 2022

Teorema de Von Schoonen

Frans van Schooten (1615-1660) fue un matemático holandés que debe su fama al desarrollo y explicación de las nuevas ideas matemáticas contenidas en La Géométrie de René Descartes que dieron origen a la geometría analítica. El teorema, que lleva su nombre y es poco conocido, describe una propiedad de los triángulos equiláteros:

   Para un triángulo equilátero ABC con un punto D en su circuncentro, los segmentos AD, BD y CD que unen D con cada uno de los vértices del triángulo, verifican que el segmento mayor es igual a la suma de los otros dos.

  • Los puntos A y B permiten cambiar la posición y el tamaño de la figura.
  • El punto D se puede desplazar por la circunferencia.
  • Se puede ver la construcción 'paso a paso'.
El teorema es consecuencia del teorema de Ptolomeo para cuadriláteros inscritos en una circunferencia (cuadriláteros cíclicos): $$|BC| \cdot |DA|=|AC| \cdot |DB|+|AB| \cdot |DC| \rightarrow |DA|= |DB|+ |DC|$$ siendo |DA| el segmento mayor y ser el triángulo equilátero.

lunes, 29 de agosto de 2022

Modelos de urnas

Un modelo de urnas se construye a partir de un conjunto de urnas que contengan bolas de diferentes colores. Luego se establecen unas reglas que fijan el procedimiento de añadir o retirar bolas de las urnas en función del color de la bola extraída.  Dentro de los modelos de urnas tienen una importancia especial los llamados "Modelos por Contagio", esto es, modelos donde la ocurrencia de un suceso tiene efecto de cambiar la probabilidad de las posteriores ocurrencias de ese mismo suceso. 

Una urna contiene N bolas, a rojas y b verdes; se extrae al azar una bola, se reemplaza y se añaden c bolas del mismo color y d bolas del color contrario. Se hace una nueva extracción aleatoria de la urna (que ahora contiene a+b+c+d bolas) y se repite el procedimiento sucesivamente. 

Modelo directo:

Cuando se fija el número n de repeticiones del experimento y se conoce como el  Modelo de Bernard Frieman que lo propuso en 1947. Viene definido por los siguientes parámetros:
$$(a,b,c,d,n)$$
El Modelo de Pólya es un caso particular del modelo anterior cuando el parámetro d=0, y viene definido por los parámetros:
$$(a,b,c,0,n)$$
La probabilidad de que la primera bola extraída sea roja es:
$$p(r_1)=\frac{a}{N}$$
La probabilidad de que las dos primera bolas extraídas sean rojas es:
$$p(r_1,r_2)=\frac{a}{N}\frac{a+c}{N+c}$$
 La }de que las tres primera bolas extraídas sean rojas es:
$$p(r_1,r_2,r_3)=\frac{a}{N}\frac{a+c}{N+c}\frac{a+2c}{N+2c}$$
 La probabilidad de que las k primeras bolas extraídas sean rojas es:
$$p(r_1,r_2,\dots r_k)=\frac{a}{N}\frac{a+c}{N+c}\dots\frac{a+(k-1)c}{N+(k-1)c}=\frac{a^{(k,c)}}{N^{(k,c)}}$$
que es la forma simbólica y abreviada de expresar el productorio.
Si además se quiere que en las  restantes extracciones las bolas sean verdes:
$$p(r_1,r_2,\dots r_k,v_{k+1},v_{k+2}\dots v_n)=$$
$$\frac{a^{(k,c)}}{N^{(k,c)}}\frac{N-a}{N+kc}\frac{N-a+c}{N+(k+1)c}\dots \frac{N-a+(n-k-1)c}{N+(n-1)c}=$$
$$\frac{a^{(k,c)}(N-a)^{(n-k,c)}}{N^{(n,c)}}$$
Como esta probabilidad no depende del orden en que aparecen las k bolas rojas y las n-k bolas verdes, la fórmula final será:
$$\binom{n}{k}\frac{a^{(k,c)}(N-a)^{(n-k,c)}}{N^{(n,c)}}$$
Dependiendo del valor del parámetro c se tiene:
  • Si c>0 el éxito y el fracaso son contagiosos, en el sentido de que un éxito o un fracaso aumenta la probabilidad de un futuro éxito o fracaso, respectivamente.
  • Si c=0 los sucesos son independientes y no se alteran las condiciones iniciales.
  • Si c<0 el éxito disminuye la probabilidad de un nuevo éxito  y el fracaso disminuye la probabilidad de un nuevo fracaso.
Las distribuciones de probabilidad que obtienen según los valores del parámetro c son:
  • Si c=-1: Distribución hipergeométrica.
  • Si c=0: Distribución binomial.
  • Si c=1: Distribución hipergeométrica negativa.
  • Si c=a=N-a: Distribución uniforme discreta.
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede elegir elegir el número de bolas negras 'N' y bolas rojas 'R' iniciales.
  • Se pueden modificar los parámetros 'a' y 'b' de bolas de cada color que se añaden en cada iteración.
  • Se puede fijar el número de iteraciones 'k'.
  • Se muestran los valores y la gráfica de las sucesivas iteraciones. 
  • Se muestran el número de bolas negras y rojas finales y su proporción.
Descargar .XLS

viernes, 17 de junio de 2022

Selectividad Ciencias Sociales-Curso 2021-2022

A continuación aparecen los enunciados y las soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y de julio para el bachillerato de ciencias sociales del curso 21/22.

Enunciados y soluciones de junio
Enunciados y soluciones de julio

miércoles, 15 de junio de 2022

Selectividad Ciencias-Curso 2021-2022

A continuación aparecen los enunciados y las soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y de julio para el bachillerato de ciencias del curso 21/22.

Enunciados y soluciones de junio
Enunciados y soluciones de julio

viernes, 27 de mayo de 2022

En el espíritu de Wasan (II)

Podemos añadir que el wasan se desarrollo en el período Tokugawa (1603-1868) cuando el país estaba aislado de las influencias europeas. Al comienzo del período imperial (1868-1945), el país se abrió a occidente adoptando su matemática, lo que supuso el declive de las ideas utilizadas en el wasan.

Veamos otro  ejemplo sencillo que también utiliza el teorema de Pitágoras.

Una circunferencia es tangente interior a una circunferencia mayor y a su diámetro. Construir la circunferencia tangente a ambas y a ese diámetro y expresar su radio en función de la circunferencia mayor.

Sea R el radio de la circunferencia mediana de centro E y r el radio del la circunferencia buscada. En el triángulo ADE, aplicando el teorema de Pitágoras, se tiene:

$$(R+r)^2=AD^2+(R-r)^2 \rightarrow 4Rr=AD^2$$

De forma análoga, en el triángulo ABC se tiene:

$$(2R-r)^2=BC^2+r^2 \rightarrow  4R^2-4Rr=BC^2$$

Como AD=BC se tiene que:

$$4R^2-4Rr=4Rr \rightarrow 4R^2=8Rr \rightarrow R=2r$$

Entonces el centro A, del la circunferencia buscada, se puede obtener como intersección de dos circunferencias de centros C y E y de radio 3R/2.

  • Los puntos azules permiten cambiar la posición y el tamaño de la figura.
  • Se puede ver la construcción 'paso a paso'.

lunes, 18 de abril de 2022

En el espíritu de Wasan (I)

Hay una palabra, wasan, que utilizan los japoneses para referirse  a sus matemáticas frente a yosan o matemáticas occidentales. Aunque el wasan se debe a varios matemáticos japoneses, los iniciadores son Kambei Mori (principio siglo 17) y Yoshida Mitsuyoshi (1598-1672). Veamos un ejemplo sencillo que utiliza el teorema de Pitágoras.

Los centros A y B de dos círcunferencias iguales están en la circunferencia de la otra. Construir una circunferencia tangente a la recta AB, a la circunferencia de centro A interiormente y a la circunferencia de centro B exteriormente.

Llamamos AB=a, AF=x y GF=r (el radio de la circunferencia buscada). En el triángulo BFG, aplicando el teorema de Pitágoras, se tiene:

$$(a+r)^2=r^2+(a+x)^2$$

y , de forma análoga, en el triángulo AFG se cumple:

$$ (a-r)^2=r^2+x^2$$

Simplificando ambas ecuaciones y restando se obtiene:

$$4ar=a^2+2ax \rightarrow x+ a/2=2r$$

Significa que el lado EF del cuadrado ACDE, siendo C el punto medio del segmento AB, es un diámetro de la circunferencia buscada. Por tanto es fácil su construcción.

  • Los puntos A y B permiten cambiar la posición y el tamaño de la figura.
  • Se puede ver la construcción 'paso a paso'.

lunes, 28 de febrero de 2022

Método de Lill

El ingeniero y oficial del ejército austríaco Eduard Lill (1830-1900) ideó en matemáticas un procedimiento gráfico para determinar las raíces reales de un polinomio, que en esencia es una representación gráfica del algoritmo de Horner. Publicó su invento en 1867 en la revista francesa 'Nouvelles Annales de Mathématiques', y Charles Hermite proporcionó una descripción del mismo para el 'Compes rendus' del mismo año. Más tarde se conoció como el método de Lill.

El método de Lill implica expresar los coeficientes de un polinomio como magnitudes de una secuencia de segmentos en ángulos rectos entre sí. Encontrar las raíces se convierte en la realización de un problema geométrico. Vamos a explicarlo con el siguiente polinomio:

$$p(x)=1x^3+5x^2+7x+3$$

Siempre se puede hacer que el coeficiente de la potencia más alta sea la unidad, basta dividir todo el polinomio por ese valor. Se construye un primer segmento AB=1 y a continuación se construyen los segmentos perpendiculares correspondientes a los demás coeficientes del polinomio de la siguiente forma:

Hacia arriba BD=5, hacia la izquierda DF=7 y hacia abajo FH=3 porque todos los coeficientes son positivos. Cuando son negativos,  se construyen en el sentido contrario a partir del extremo B. Se traza un segmento AC con el extremo en un punto cualquiera del segmento BD. Se traza el segmento CE perpendicular a AC y el segmento EG perpendicular a CE.

$$tg (\alpha)=\frac{BC}{AC}=\frac{BC}{1}=BC=-x$$

$$tg (\alpha)=\frac{BC}{AC}=\frac{BC}{1}=BC=-x \rightarrow CD=5-(-x)=5+x$$

$$tg (\alpha)=\frac{DE}{CD}=\frac{DE}{5+x}=-x \rightarrow DE=-x(5+x) \rightarrow EF=7+x(5+x)$$

$$tg (\alpha)=\frac{FG}{EF}=\frac{FG}{7+x(5+x)}=-x \rightarrow FG=-x(7+x(5+x)) \rightarrow $$

$$GH=3+x(7+x(5+x))=3+x(7+5x+x^2)=3+7x+5x^2+x^3$$

Es decir, obtenemos el polinomio pero expresado según el algoritmo de Horner.
Si se divide el polinomio por x+2, se tiene:

$$\frac{1x^3+5x^2+7x+3}{x+2}=1x^2+3x+1+\frac{1}{x+2}$$

Si se observa la figura que AB=1, CD=3 y EF=1 coinciden con los coeficientes del polinomio cociente; GH=1 es el resto de la división y BC=2 es término independiente del divisor. Para obtener una raíz debemos situar el punto C de forma que la construcción de segmentos perpediculares finalice en el punto H. No hay resto y la división es exacta.
$$p(x)=1x^3+5x^2+7x+3=(x+1)^2(x+2)$$
El polinomio tiene tres raíces (una de ellas doble) y se pueden obtener gráficamente.

  • Moviendo el punto azul se obtienen dos raíces diferentes.
  • Se puede ver o no la obtención de la otra raíz doble.
  • Moviendo el punto rojo se obtiene la segunda raíz doble.
  • Se puede ver la construcción 'paso a paso'.
Desarrollando las potencias siguientes se observa que los coeficientes de los polinomios son los números combinatorios correspondientes al triángulo de Pascal.
$$(x+1)^0=1$$
$$(x+1)^2=1x^2+2x+1$$
$$(x+1)^3=1x^3+3x^2+3x^1+1$$
$$(x+1)^4=1x^4+4x^3+6x^2+4x+1$$
$$(x+1)^5=1x^5+5x^4+10x^3+10x^2+5x+1$$
Podemos obtener, de forma gráfica e iterativa, la solución de cada polinomio y mostrando los segmentos cuyos tamaños son los diferentes números combinatorios.

  • Se puede ver la construcción 'paso a paso'.

viernes, 21 de enero de 2022

Períodos de Pisano

Leonardo de Pisa o Leonardo Pisano es conocido como Fibonacci, hijo de Bonacci, que era el apodo de su padre. De ahí el nombre de Períodos de Pisano a los obtenidos de la sucesión de Fibonacci.
La operación módulo da el resto de una división entera: $$14 \mod 3 =2$$ donde 2 es el resto de dividir 14 entre 3.

Para la sucesión de Fibonacci: $$0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181...$$ la sucesión de restos, es siempre periódica: $$F_i \mod n$$
  • restos modulo 2: $$0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1...$$
  • restos modulo 3: $$0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1...$$
  • restos modulo 4: $$0,1,1,2,3,1,0,1,1,3,2,1,0,1,1,3,2,1,0,1,1,2,3,1...$$
  • restos modulo 5: $$0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2...$$
  • restos modulo 6: $$0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1...$$
  • restos modulo 7: $$0,1,1,2,3,5,1,6,1,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1...$$
  • restos modulo 8: $$0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1...$$
  • restos modulo 9: $$0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1...$$
El período en función del divisor n se indica: $$\pi(n)$$ $$\pi(2)=3, \pi(3)=8,\pi(4)=6,\pi(5)=20$$ $$\pi(6)=24, \pi(7)=16, \pi(8)=12, \pi(9)=24$$ Conforme aumenta el valor del divisor, en general, tiende a aumentar el período. Salvo el caso de n=3 todos los períodos son un número par. Si dos números,m y n, son coprimos: $$\pi(m\cdot n)=\pi(m)\cdot\pi(n)\rightarrow \pi(3)\cdot\pi(4)=8\cdot 6=24=\pi(12)$$
Para las potencias de 2:
$$\pi(n)=\frac{3n}{2}\rightarrow \pi(2)=3, \pi(4)=6, \pi(8)=12$$
Para las potencias de 5:
$$\pi(n)=4n\rightarrow \pi(5)=20$$
Considerando la sucesión de restos módulo 3, dibujamos en un circulo tres puntos equdiastantes correspondientes a los tres restos posibles. Siguiendo la sucesión, se une con un segmento cada punto de un término con el punto del término siguiente (en el caso de coincidir dos términos consecutivos no se traza ningún segmento). En la imagen se muestra como se completa la figura.
En la imagen se muestran las figuras obtenidas para las sucesiones de módulo 2, 3,4,5,6,7,8 y 9.
Nos fijamos en el número de ceros que tiene cada ciclo: 2(1), 3(2), 4(1), 5(4), 6(2), 7(2), 8(2) y 9(2). Si tiene 1 cero hay asimetría, si tiene 4 ceros tiene simetría y si tiene 2 ceros puede o no tener simetría.
En el caso de módulo 10, el periodo es: $$\pi(10)=\pi(2)\cdot\pi(5)=3\cdot 20=60$$ y el ciclo tiene 4 ceros y por tanto la figura es es simétrica.

  • Se puede ver la construcción 'paso a paso'.
Si nos fijamos en los términos de la sucesión de Fibonacci: ...8, 13, 21, 34, 55, 89,... las figuras obtenidas de los restos módulo 8, 21, 55 son idénticas y lo mismo ocurre con las figuras de los restos módulo 13, 34, 89.