sábado, 29 de diciembre de 2012

La cicloide (II)

El problema de la Braquistócrona fue el motivo de una amarga contienda entre los hermanos Johann y Jakob Bernoulli.
Dados dos puntos A y B en un plano vertical, hallar el camino AMB por el que una partícula móvil M, descendiendo por su propio peso, iría de A a B en el menor tiempo posible.
El problema lo propuso Johann sugiriendo que la respuesta correspondía a una curva muy conocida. No se trataba de encontrar puntos donde una curva tiene un máximo o u mínimo, sino que la incógnita buscada es una curva que debe minimizar cierta relación.
La solución era la conocida curva cicloide y fue obtenida de forma distinta por los hermanos Bernoulli. Jakob lo resolvió utilizando un método que sería el inicio del cálculo de variaciones, pero fue la solución de Johann la más genial utilizando de manera combinada la geometría y la física.


Sigue la construcción "paso a paso" y con dos deslizadores podrás modificar el ángulo de inclinación de la trayectoria recta y el tamaño de la cicloide. Desactivando la casilla de control podrás ocultar los valores numéricos de velocidad y energías de ambos móviles. El deslizador de tiempo permite observar los valores anteriores para cada posición de los móviles.  Pulsando el botón de "play" se activa la animación.

Veamos la explicación de Johann:

Si la partícula parte de A en reposo, la velocidad que alcanza en B depende de la diferencia de altura h entre los puntos y no de la trayectoria descrita, según la fórmula: $$v=\sqrt{2gh}$$ El principio de Fermat dice la luz viaja de un punto a otro en el menor tiempo posible. Si atraviesa dos medios distintos se cumple la ley de la refracción: $$\frac{sen \theta_1}{v_1}=\frac{sen \theta_2}{v_2}=k$$
Supongamos un medio óptico formado por finas láminas diferentes:
$$\frac{sen\theta_i}{v_i}=k$$
En nuestro problema se cumple: $$\frac{sen\theta}{\sqrt{2gh}}=k$$ siendo el ángulo el que forma la tangente a la curva con la vertical en cada instante.

Derivando las ecuaciones de la cicloide: $$x=r \alpha-rsen \alpha \wedge y=rcos \alpha-r$$
$$\frac{dx}{d\alpha}=r-rcos\alpha \wedge \frac{dy}{d\alpha}=-rsen\alpha$$
$$tg\theta=\frac{dx}{dy}=\frac{1-cos\alpha}{-sen\alpha}=-tg\frac{\alpha}{2}$$
$$\theta=|\frac{\alpha}{2}|$$
$$v=\sqrt{2gr(1-cos\alpha)}=2\sqrt{gr}sen\frac{\alpha}{2}$$
$$\frac{sen\theta}{v}=\frac{sen\frac{\alpha}{2}}{2sen\frac{\alpha}{2}\sqrt{gr}}=\frac{1}{2\sqrt{gr}}$$
que es una constante y por tanto cumple la ley de Fermat.

martes, 25 de diciembre de 2012

La cicloide (I)

Los matemáticos de la antigüedad consideraban a la cicloide la más bella de las curvas, llegándola a llamar la Helena de la Geometría.
La cicloide es la curva que se obtiene cuando se hace rodar, sin deslizar, un disco sobre una superficie horizontal. La trayectoria que describe un punto situado en el borde del disco es la curva llamada cicloide. Por cada giro completo del disco se obtiene un arco de cicloide.
Mersenne la definió de forma rigurosa y Galileo le puso el nombre (en griego significa circular).
ECUACIONES

El punto P de una circunferencia de radio R está situado inicialmente en el origen de coordendas. La circunferencia gira sin deslizamiento y el punto P describe la cicloide al dar la circunferencia una vuelta completa. Las cordenadas del punto P son:
$$x=OA=OB-AB=PB-PD=R\alpha-Rsen\alpha=R(\alpha-sen\alpha)$$ $$y=PA=CB-CD=R-Rcos\alpha=R(1-cos\alpha)$$
LONGITUD $$\frac{dx}{d\alpha}=x'=R(1-cos\alpha)$$ $$\frac{dy}{d\alpha}=y'=Rsen\alpha$$ $$L=\int_0^{2\pi}\sqrt{x'^2+y'^2}\,\mathrm{d}\alpha=R\sqrt{2}\int_0^{2\pi}\sqrt{1-cos\alpha}\,\mathrm{d}\alpha=$$ $$=2R\int_0^{2\pi}sen\frac{\alpha}{2}\,\mathrm{d}\alpha=8R$$
¡La longitud de la cicloide es 8 veces el radio del círculo!
ÁREA
$$L=\int_0^{2\pi R}y\,\mathrm{d}x=R^2\int_0^{2\pi}(1-cos\alpha)^2\,\mathrm{d}\alpha=3\pi R^2$$
¡El área bajo la cicloide es 3 veces el área del círculo que da lugar a ella!

Galileo pensó que no debía ser un número tan redondo y conjeturó que debía ser pi. Roberval y su discípulo Torricelli demostraron los valores de la longitud y del área correctos en el siglo XVII.


Sigue la construcción "paso a paso" y con los deslizadores puedes modificar el radio de la circunferencia y ver la construcción de la cicloide. Pulsando el botón de "play" se activa la animación.