Mostrando entradas con la etiqueta excel. Mostrar todas las entradas
Mostrando entradas con la etiqueta excel. Mostrar todas las entradas

miércoles, 30 de octubre de 2024

Incendio forestal (II)

En el modelo se considera un terreno rectangular de 20X40 puntos en los que se pueden plantar hasta 800 árboles entre pinos (P) y robles (M). Se considera que el fuego no afecta apenas a los robles pero sí a los pinos. El simulador permite elegir el porcentaje de pinos y robles plantados que son situados en el terreno de forma aleatoria. Puede haber varios focos de fuego que se sitúan de manera aleatoria en el terreno. El incendio se propaga en cualquier dirección de forma que un pino ardiendo prende a los pinos cercanos pero no afecta a los robles. En un momento determinado el fuego se detiene al no poder propagarse más.

¡Una reforestación combinada con árboles resistentes al fuego reduce el impacto de un incendio!
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • El botón 'iniciar' limpia de árboles el terreno.
  • Las primeras flechas permiten elegir el porcentaje de pinos plantados.
  • Las segundas flechas permiten elegir el porcentaje de robles plantados.
  • El botón 'plantar' muestra los árboles reales plantados y su porcentaje.
  • El botón 'fuego' pone cada vez un punto de inicio del fuego.
  • El botón 'incendio' muestra el resultado del incendio, los pinos quemados y su porcentaje.
Descargar .XLS

viernes, 30 de agosto de 2024

Incendio forestal (I)

En el modelo se considera un terreno rectangular de 20X40 puntos en los que se pueden plantar hasta 800 pinos (P). El simulador permite elegir el porcentaje de pinos plantados que son situados en el terreno de forma aleatoria. El foco del fuego se produce en la primera fila del rectángulo, donde se puede elegir el porcentaje de pinos afectados (Q) . El incendio se propaga de arriba a abajo, debido a la dirección del viento, de forma que un pino ardiendo prende a los pinos cercanos situados más abajo. En un momento determinado el fuego se detiene al no poder propagarse más.

¡Una reforestación excesiva y sin criterio puede ser contraproducente!
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • El botón 'iniciar' limpia de árboles el terreno.
  • Las primeras flechas permiten elegir el porcentaje de árboles plantados.
  • El botón 'plantar' muestra los árboles reales plantados y su porcentaje.
  • Las segundas flechas permiten elegir el porcentaje de árboles que inician el incendio.
  • El botón 'quemar' muestra los árboles reales que inician el fuego y su porcentaje.
  • El botón 'incendio' muestra el resultado del incendio, los árboles quemados y su porcentaje.
Descargar .XLS

miércoles, 19 de abril de 2023

Dados no transitivos (I)

Sean tres dados: rojo, verde y azul con sus caras numeradas como se muestra en la imagen.
Si el primer jugador elige el dado verde, entonces, si el segundo jugador elige el dado rojo tiene una mayor probabilidad de ganar. Observando el diagrama de árbol:
$$p(R>V)=p(3)·p(2)+p(6)=\frac{5}{6}·\frac{1}{2}+\frac{1}{6}=\frac{7}{12}$$ Análogamente el dado verde 'gana' al azul y el dado azul 'gana' al rojo: $$p(V>A)=p(2)·p(1)+p(5)=\frac{1}{2}·\frac{1}{6}+\frac{1}{2}=\frac{7}{12}$$ $$p(A>R)=p(4)·p(3)=\frac{5}{6}·\frac{5}{6}=\frac{25}{36}$$
Se forma un ciclo que se visualiza en el grafo dirigido de la imagen y por tanto no se cumple la propiedad transitiva. Por lo tanto, siempre que tu oponente elija primero, siempre podrás elegir un dado con más posibilidades de ganar, con una probabilidad promedio de ganar de alrededor del 62%, aunque te gustaría que eligiera el dado rojo.
Tim Rowett presentó este juego de dados no transitivos en el Gathering for Gardner V (2002). Es una fundación educativa sin ánimo de lucro para mantener el legado del divulgador matemático Martin Gardner (1914-2010).

Si se lanzan dos dados del mismo color entonces el ciclo se invierte. Los dados verdes 'ganan' a los dados rojos: $$ p(VV>RR)=p(7)·p(6)+p(10)·p(6)+p(10)·p(9)=$$ $$\frac{18}{36}·\frac{25}{36}+\frac{9}{36}·\frac{25}{36}+\frac{9}{36}·\frac{10}{36}=\frac{765}{1296}=\frac{85}{144}$$ teniendo en cuenta que los dados verdes pueden sumar 4,7,10 y los dados rojos pueden sumar 6,9,12.
En el diagrama de árbol se muestra como ganan los dados verdes a los dados rojos y el grafo dirigido visualiza un ciclo de sentido inverso.

Los dados azules 'ganan' a los dados verdes: $$ p(AA>VV)=p(5)·p(4)+p(8)·p(4)+p(8)·p(7)=$$ $$\frac{10}{36}·\frac{9}{36}+\frac{25}{36}·\frac{9}{36}+\frac{25}{36}·\frac{18}{36}=\frac{765}{1296}=\frac{85}{144}$$ teniendo en cuenta que los dados azules pueden sumar 2,5,8 y los dados verdes pueden sumar 4,7,10.

Los dados rojos 'ganan' a los dados azules: $$ p(RR>AA)=p(6)·p(2)+p(6)·p(5)+p(9)+p(12)=$$ $$\frac{25}{36}·\frac{1}{36}+\frac{25}{36}·\frac{10}{36}+\frac{10}+\frac{1}{36}=\frac{671}{1296}$$ teniendo en cuenta que los dados rojos pueden sumar 6,9,12 y los dados azules pueden sumar 2,5,8. La probabilidad media de ganar con dos dados es alrededor del 57% y la probabilidad de que los dados rojos ganen a los dados azules es muy ajustada.
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede jugar contra el ordenador eligiendo el número de partidas y en cada tirada cualquiera de los tres colores con los botones de la izquierda.
  • Se muestran los resultados acumulados después de cada tirada así como la gráfica correspondiente.
  • Se puede jugar contra el ordenador eligiendo series de jugadas del tamaño deseado y siempre con un color determinado con los botones de la derecha.
  • Se muestran los resultados acumulados después de cada serie así como la gráfica correspondiente.
Descargar .XLS

lunes, 29 de agosto de 2022

Modelos de urnas

Un modelo de urnas se construye a partir de un conjunto de urnas que contengan bolas de diferentes colores. Luego se establecen unas reglas que fijan el procedimiento de añadir o retirar bolas de las urnas en función del color de la bola extraída.  Dentro de los modelos de urnas tienen una importancia especial los llamados "Modelos por Contagio", esto es, modelos donde la ocurrencia de un suceso tiene efecto de cambiar la probabilidad de las posteriores ocurrencias de ese mismo suceso. 

Una urna contiene N bolas, a rojas y b verdes; se extrae al azar una bola, se reemplaza y se añaden c bolas del mismo color y d bolas del color contrario. Se hace una nueva extracción aleatoria de la urna (que ahora contiene a+b+c+d bolas) y se repite el procedimiento sucesivamente. 

Modelo directo:

Cuando se fija el número n de repeticiones del experimento y se conoce como el  Modelo de Bernard Frieman que lo propuso en 1947. Viene definido por los siguientes parámetros:
$$(a,b,c,d,n)$$
El Modelo de Pólya es un caso particular del modelo anterior cuando el parámetro d=0, y viene definido por los parámetros:
$$(a,b,c,0,n)$$
La probabilidad de que la primera bola extraída sea roja es:
$$p(r_1)=\frac{a}{N}$$
La probabilidad de que las dos primera bolas extraídas sean rojas es:
$$p(r_1,r_2)=\frac{a}{N}\frac{a+c}{N+c}$$
 La }de que las tres primera bolas extraídas sean rojas es:
$$p(r_1,r_2,r_3)=\frac{a}{N}\frac{a+c}{N+c}\frac{a+2c}{N+2c}$$
 La probabilidad de que las k primeras bolas extraídas sean rojas es:
$$p(r_1,r_2,\dots r_k)=\frac{a}{N}\frac{a+c}{N+c}\dots\frac{a+(k-1)c}{N+(k-1)c}=\frac{a^{(k,c)}}{N^{(k,c)}}$$
que es la forma simbólica y abreviada de expresar el productorio.
Si además se quiere que en las  restantes extracciones las bolas sean verdes:
$$p(r_1,r_2,\dots r_k,v_{k+1},v_{k+2}\dots v_n)=$$
$$\frac{a^{(k,c)}}{N^{(k,c)}}\frac{N-a}{N+kc}\frac{N-a+c}{N+(k+1)c}\dots \frac{N-a+(n-k-1)c}{N+(n-1)c}=$$
$$\frac{a^{(k,c)}(N-a)^{(n-k,c)}}{N^{(n,c)}}$$
Como esta probabilidad no depende del orden en que aparecen las k bolas rojas y las n-k bolas verdes, la fórmula final será:
$$\binom{n}{k}\frac{a^{(k,c)}(N-a)^{(n-k,c)}}{N^{(n,c)}}$$
Dependiendo del valor del parámetro c se tiene:
  • Si c>0 el éxito y el fracaso son contagiosos, en el sentido de que un éxito o un fracaso aumenta la probabilidad de un futuro éxito o fracaso, respectivamente.
  • Si c=0 los sucesos son independientes y no se alteran las condiciones iniciales.
  • Si c<0 el éxito disminuye la probabilidad de un nuevo éxito  y el fracaso disminuye la probabilidad de un nuevo fracaso.
Las distribuciones de probabilidad que obtienen según los valores del parámetro c son:
  • Si c=-1: Distribución hipergeométrica.
  • Si c=0: Distribución binomial.
  • Si c=1: Distribución hipergeométrica negativa.
  • Si c=a=N-a: Distribución uniforme discreta.
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede elegir elegir el número de bolas negras 'N' y bolas rojas 'R' iniciales.
  • Se pueden modificar los parámetros 'a' y 'b' de bolas de cada color que se añaden en cada iteración.
  • Se puede fijar el número de iteraciones 'k'.
  • Se muestran los valores y la gráfica de las sucesivas iteraciones. 
  • Se muestran el número de bolas negras y rojas finales y su proporción.
Descargar .XLS

viernes, 29 de octubre de 2021

Modelo lingüístico de Abrams-Strogatz

El 90% de las lenguas del mundo pueden desaparecer en la próxima generación. Vamos a analizar la competencia entre dos lenguas en un ámbito determinado y donde los individuos son monlingües y como una de ellas acaba imponiéndose a la otra. La atracción hacia una de las lenguas depende de su número de hablantes pero también del 'estatus' de una lengua, entendido como las oportunidades económicas y sociales que dan expresarse en esa lengua. Si X e Y representan dos lenguas que comparten un mismo espacio, se tiene que la velocidad con la que cambia la población que habla la lengua X es:
$$\frac{dx}{dt}=(1-x)\cdot P_{yx}-x \cdot P_{xy}$$ Siendo x la proporción de hablantes de la lengua X, y Pyx y Pxy las probabilidades de cambiar de la lengua Y a la lengua X y viceversa.
$$P_{yx}=sx^a \wedge P_{xy}=(1-s)(1-x)^a$$
donde s es el parámetro que mide el 'estatus' o 'prestigio' de la lengua, siendo: $$0 \leq s \leq 1$$
Si s<1/2 la lengua X tiene menos 'prestigio' que la lengua Y.

El parámetro a mide como influye de la mayor o menor conectividad de la población. Una población muy dispersa dificulta los contactos y disminuye la posibilidad de cambiar de lengua, eso ocurre cuando a>1. En cambio si la población está muy interconectada, ´por ejemplo grandes núcleos de población, se favorece el cambio de idioma, lo que ocurre cuando a<1.
La fracción de hablantes de la lengua X a largo plazo para a=1, se aproxima a la función exponencial decreciente: $$x=e^{(2s-1)t} \wedge s < \frac{1}{2}$$
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede elegir la proporción de personas que hablan la lengua X.
  • Se pueden modificar los parámetros 's' y 'a'.
  • Se puede elegir el instante temporal y observar la proporción que habla cada lengua.
  • Se muestran las gráficas de la evolución de las poblaciones.
  • Descargar .XLS

miércoles, 19 de mayo de 2021

Sucesiones de Fibonacci (III)

Vimos una variante de la sucesión de Fibonacci que se obtenía sumando (o restando) a un término el anterior de forma aleatoria con probabilidad 1/2: cara (+) o cruz (-). La fórmula de recurrencia era: $$R_{n}=R_{n-1} \pm R_{n-2}$$ Si la secuencia aleatoria fuera: $$+,+,-,-,+,+,-,+,-,-,...$$ la sucesión sería: $$1,1,2,3,1,-2,-1,-3,-2,-5,-3,2,...$$ Ahora vamos a considerar series no aleatorias y repetidas de + y -, es decir, con un patrón fijo. Un ciclo de longitud n es: $$\sigma_n=(s_1,s_2,...,s_n) \wedge s_i\in\{+,-\} \wedge 1 \leq i \leq n$$ $$-,-,+,-,-,+,-,-,+,... \rightarrow 1,1,0,-1,-1,4,5,1,6,7,1,...$$ $$+,+,-,+,+,-,+,+,-,... \rightarrow 1,1,2,3,1,4,5,1,6,7,1,...$$ corresponde a los ciclos: $$ \sigma_3=(-,-,+) \wedge \sigma_3=(+,+,-)$$ Los resultados son muy diferentes dependiendo de la situación de esos símbolos en la cadena y de la longitud de la cadena de + y - . Si el ciclo tiene longitud n, el número de posibilidades es VR2,n.
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede obtener el valor de los los términos de la sucesión.
  • Se pueden analizar las series con ciclos de 2, 3, 4 y 5 elementos.
  • Se pueden modificar los signosn + y - de las series con ciclos de 2, 3, 4 y 5 elementos.
  • Se muestran las gráficas de los términos de la sucesión.
Descargar .XLS

viernes, 16 de abril de 2021

Sucesiones de Fibonacci (II)

Vamos a volver sobre la sucesión de Fibonacci: $$1, 1, 2, 3, 5, 8, 13, 21, 34, 55,...$$ $$F_1=1,\quad F_2=1,\quad F_n=F_{n-1}+F_{n-2}$$ donde el cociente de dos términos consecutivos tiende al número de oro: $$\lim_{n \rightarrow \infty} \frac{F_{n+1}}{F_n}= \phi$$ Esto permite obtener de forma aproximada un término muy avanzado de la sucesión. $$F_n \approx F_{n-1} \cdot\phi \rightarrow F_n \approx F_{n-2} \cdot\phi^2 \rightarrow F_n \approx \cdot\phi^n $$ Si se quiere obtener un término conociendo el anterior, basta multiplicarlo por el número de oro y redondear: $$F_6 \approx F_5\cdot 1.61803...\approx 8.09016... \rightarrow F_6=8$$ Veamos la diferencia entre la aproximación y el verdadero valor del término 1000000: $$F_{1000000} \approx\phi^{1000000} \approx 4.4 \cdot 10^{208987}$$ $$F_{1000000}= 1.95 \cdot 10^{208987}$$ Supongamos ahora que la sucesión se obtiene sumando (o restando) a un término el anterior de forma aleatoria con probabilidad 1/2: cara (+) o cruz (-). La fórmula de recurrencia ahora será: $$R_{n}=R_{n-1} \pm R_{n-2}$$ Si la secuencia aleatoria fuera: $$+,+,-,-,+,+,-,+,-,-,...$$ la sucesión sería: $$1,1,2,3,1,-2,-1,-3,-2,-5,-3,2,...$$ ¿Tenderá a más infinito, a menos infinito, a cero o será caótica? Pues así como la sucesión de Fibonacci clásica tiende a una tasa de crecimiento, que es el número de oro, la sucesión de Fibonacci aleatoria también tiende a una tasa de crecimiento: $$1.1319882487943...$$ conocida como la constante de Wiswanath. Así que: $$R_{1000000}=1.1319882487943...^{1000000} \approx \pm 8.3 \cdot 10^{53841}$$ Otra forma de obtener la constante es: $$|R_n|^{\frac{1}{n}} \rightarrow 1.13198... \wedge n\rightarrow \infty$$ Es 'casi seguro', pues existe una remota posibilidad de obtener de forma aleatoria la sucesión de Fibonacci cuya ratio tiende al número de oro. Es evidente que, siguiendo el mismo procedimiento, se puede obtener 'seguro' el número de oro: $$|F_n|^{\frac{1}{n}} \rightarrow 1.61803... \wedge n\rightarrow \infty$$ Se puede considerar que sumar o restar no sea equiprobable y tenga un sesgo. Si la probabilidad de sumar es 1, se obtendrá la sucesión de Fibonacci clásica y si la probabilidad de restar es 1, entonces se obtiene la sucesión de Fibonacci oscilante con signos alternos. ¿Qué ocurre si sólo se le suma (resta) a un término la mitad del anterior? $$R_n=R_{n-1} \pm \frac{1}{2}R_{n-2}$$ Se obtiene una sucesión que tiende a cero. Pero para valores comprendidos entre 1/2 y 1 ni se anula ni tiende a infinito. Concretamente para el valor 0.70258... ni crece ni decrece. Esto significa que la tasa de crecimiento tiende, aproximadamente, a 1.
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede obtener el valor de los los términos de la sucesión.
  • Se puede obtener el valor absoluto de los los términos de la sucesión.
  • Se puede obtener el valor de la tasa de crecimiento.
  • Se puede elegir la probabilidad (m) de sumar o restar los términos.
  • Se puede elegir la proporción (s) del término que se suma o resta.
  • Se muestran las gráficas de los términos, los valores absolutos de los términos y los valores de la constante de Wiswanath.
Descargar .XLS

domingo, 21 de febrero de 2021

Conjetura de Kollatz (II)

 La conjetura de Collatz, también conocida como la conjetura de 3n+1, conjetura de Ulam o problema de Siracusa, es una conjetura de la teoría de números establecida por Lothar Collatz en 1937.

Si un número n es par se divide por 2:

$$f(n)=\frac{n}{2}$$

Si un número n es impar se multiplica por 3 y se le suma 1:

$$f(n)=3n+1$$

La conjetura dice: Si partimos de cualquier número natural y se aplican los criterios anteriores de  forma sucesiva a los números que se van obteniendo, siempre se termina en 1. Si se continuara el proceso se obtendría {4,2,1} de manera cíclica.

Aunque no existe una demostración matemática de la conjetura, se ha probado que para números menores que 2^68 se cumple. Por otro lado, de los 100.000.000 primeros números, el que genera la secuencia más larga es el 63.728.127 que necesita 947 iteraciones.

Los números que son suma de potencias de 2 con exponente par necesitan pocas iteraciones para llegar al 1. Por ejemplo:

$$2^0+2^2=1+4=5\rightarrow 5·3+1=16=2^4$$

$$2^0+2^2+2^4=1+4+16=21\rightarrow 21·3+1=64=2^6$$

$$2^0+2^2+2^4+2^6=1+4+16+64=85\rightarrow 85·3+1=256=2^8$$

Y como se llega a una potencia de 2, a partir de ahí sólo se necesitan  4, 6 y 8 iteraciones respectivamente.

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede elegir el valor inicial de la serie.
  • Se puede ir cambiando de iteración y obtener el valor correspondiente.
Descargar .XLS

domingo, 1 de noviembre de 2020

Sucesiones de Fibonacci (I)

Todos conocemos la sucesión de Fibonacci: $$1, 1, 2, 3, 5, 8, 13, 21, 34, 55,...$$ $$F_1=1,\quad F_2=1,\quad F_n=F_{n-1}+F_{n-2}\;\;(n>2)$$ donde el cociente de dos términos consecutivos tiende al número de oro: $$\lim_{n \rightarrow \infty} \frac{F_{n+1}}{F_n}= \phi$$ Si ahora consideramos: $$F_1=1,\quad F_2=1,\quad F_3=F_2+F_1 \quad F_n=F_{n-1}+F_{n-2}+F_{n-3}\;\;(n>3)$$ se obtiene la llamada sucesión de Tribonacci: $$1, 1, 2, 4, 7, 13, 24, 44, 81,...$$ En general, se llama una sucesión k de Fibonacci: $$\{F_n^k\}_{i=1}^\infty$$ $$F_1^k=F_2^k=1 \quad F_n^k=\sum_{i=1}^kF_{n-i}^k\;\;(n>2)$$ Así se obtienen para: $$k=2, 3, 4, 5,...$$ las sucesiones de Fibonacci, Tribonaccci, Tetranacci, Pentanacci,... Para todas estas sucesiones : $$\exists \;\lim_{n \rightarrow \infty} \frac{F_{n+1}}{F_n}$$ Estos límites son la mayor solución positiva de las ecuaciones: $$x^n(2-x)=1$$ Para n=2 se tiene: $$x^2(2-x)=1 \rightarrow x^3-2x^2+1=0 \rightarrow x=\frac{1}{2}(\sqrt {5}+1) =\phi\approx 1.618$$ Para n=3 se tiene: $$x^3(2-x)=1 \rightarrow x^4-2x^3+1=0 \rightarrow $$ $$x=\frac{1}{3}[1+(19-3\sqrt{33})^\frac{1}{3}+(19+3\sqrt{33})^\frac{1}{3}] \approx 1.839$$ Vemos que la solución algebraica es cada vez más compleja y difícil de obtener. Una alternativa es considerar la función: $$f(x)=x^n(2-x)-1$$ Si se representan estas funciones podemos obtener los límites buscando las raíces mayores que la unidad de esas funciones.
En la figura se han representado las funciones para n=2,3,4. Se observa que todas tienen como raíz la unidad. Para n=2 además hay una raíz negativa; para n=3 dos raíces  complejas; para n=4 hay una negativa y dos complejas. Además se observa que los valores buscados van creciendo y tienen al número 2.

Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede elegir el tipo de sucesión.
  • Se muestran los 20 primeros términos de la sucesión y del cociente entre términos consecutivos. 
  • Variando F1 y F2 se puede observar que no influyen en el límite del cociente entre términos consecutivos.
Descargar .XLS

martes, 24 de marzo de 2020

Modelo epidemia (III)

Un zombi es un muerto que ha sido revivido mediante un rito mágico y que carece de voluntad propia, según ciertas leyendas de Haití y del sur de Estados Unidos de América. Los muertos vivientes se hicieron populares con el éxito de la película La Noche de los Muertos Vivientes (Night of the Living Dead) de George A. Romero en 1968.
Siguiendo con los modelos de epidemia, vamos a presentar el conocido como 'Modelo Zombi'. El modelo básico se conoce con las siglas SZR. Se designa S a los humanos susceptibles de ser atacados por un zombi, Z al número de zombis y R al número zombis eliminados. La población total N se mantiene constante y por tanto en cualquier instante de tiempo se cumple: $$N=S(t)+Z(t)+R(t)$$
Las ecuaciones diferenciales son: $$\frac{dS}{dt}=-\alpha SZ$$ $$\frac{dZ}{dt}=(\alpha -\beta)SZ +\gamma R$$ $$\frac{dR}{dt}=\beta SZ-\gamma R$$
  • alfa: la probabilidad de que un zombi infecte a un humano y se convierta en un nuevo zombi.
  • beta: la probabilidad de que un humano destruya a un zombi y muera.
  • gamma: la probabilidad de que resucite y se convierta de nuevo en zombi.
El proceso se muestra en el siguiente diagrama:
Es lógico que la velocidad de infección en un instante dado sea proporcional al número de humanos y al número de zombis en ese momento, es decir, al número de encuentros posibles, siendo la tasa de contagio 'alfa' el factor de proporcionalidad.
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Se puede modificar S0 y los parámetros.
  • Variando t se puede conocer el reparto de la pobación en cada instante.
  • Se muestran las gráficas S(t), Z(t) y R(t).
Descargar .XLS

viernes, 14 de febrero de 2020

Apuestas: La estrategia de Kelly

Sea un juego de apuesta donde la probabilidad p de ganar es superior al 50%. La estrategia consiste en apostar cada vez una fracción fija x de la fortuna disponible en cada apuesta.
Un jugador codicioso, como el juego es favorable, apostará un fracción alta de su fortuna y ganará a menudo pero cuando pierda se resentirá mucho su fortuna. En el caso extremo de apostarlo todo cada vez, irá duplicando su fortuna pero terminará en alguna jugada arruinado. En cambio, un jugador temeroso apostará una pequeña fracción y su fortuna aumentará pero muy lentamente.

¿Qué fracción se debe apostar?
La que haga que la tasa de crecimiento de la fortuna sea máxima

Si se apuesta una fracción x, se tiene 1+x si se gana y 1-x si se pierde. Después de N jugadas se ha ganado en M y se ha perdido en N-M. Si F es la fortuna inicial, después de las N jugadas, la ganancia G será:
$$G=(1+x)^M(1-x)^{N-M}F$$
Tomando logaritmos se tiene:
$$ln\left(\frac{G}{F}\right)=M·ln(1+x)+(N-M)·ln(1-x)$$
Se divide por N ambos términos:
$$\frac{1}{N}· ln\left(\frac{G}{F}\right)=\frac{M}{N}·ln(1+x)+\frac{N-M}{N}·ln(1-x)$$
El término de la izquierda representa la tasa media de crecimiento (TMC) de cada apuesta que queremos sea máxima.  Además las fracciones de porcentaje de aciertos y de pérdidas, cuando el número de apuestas crece, tienden a sus respectivas probabilidades:
$$\frac{M}{N} \rightarrow p \wedge \frac{N-M}{N} \rightarrow 1-p$$
Por tanto:
$$TMC=p·ln(1+x)+(1-p)·ln(1-x)$$

Derivando la expresión e igualando a cero para buscar el máximo, se obtiene:
$$x=2p-1=p-(1-p)$$

Estrategia de Kelly: En un juego favorable con ganancias de igual cuantía que las apuestas, la fracción de fortuna que debe apostarse es igual a la magnitud de la ventaja.

Por ejemplo si p=0.52, 1-p=0.48 y se debe apostar la diferencia 0.52-0.48=0.04 para que la tasa media de crecimiento a largo plazo sea máxima. Apostar, cada vez, el 4% de la fortuna disponible supone una tasa del 0.0008 en cada jugada. Después de N jugadas la ganancia esperada será 1.0008^N, aunque este promedio estará sujeto a grandes fluctuaciones, pues se perderá y ganará varias veces seguidas.
Descargar .XLS
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • El botón serie permite generar 100 apuestas sucesivas.
  • La gráfica muestra la serie partiendo de un valor inicial 100.
  • Con las flechas se elige la probabilidad de éxito de la apuesta.
  • Con las flechas se elige el porcentaje del saldo que se apuesta.
  • Con las flechas se ve la ganancia en una apuesta dada y el saldo hasta ese instante.
  • Se muestran la ganancia y la tasa de ganancia media teóricas.

jueves, 29 de agosto de 2019

Modelo de población de Leslie


Cuando la variación de una población se realiza en función del tiempo, obtenemos un proceso (continuo o discreto) que recibe el nombre de dinámica de la población. El objetivo de la dinámica de poblaciones es estudiar los cambios numéricos que sufren las poblaciones, determinar sus causas, predecir su comportamiento y analizar sus consecuencias. Vamos a presentar el modelo de dinámica de Leslie, en honor del autor del método, el fisiólogo Patrick Holt Leslie (1900-1974).
Parece claro que a tasa de mortalidad será mayor entre los individuos de mayor edad que entre los más jóvenes. Asimismo a tasa de fecundidad depende también de la edad. Con carácter general, podemos suponer que la población consiste enteramente de hembras. En realidad, para la mayoría de las especies la cantidad de machos es prácticamente la misma que la de hembras. Por otra parte, en lo que respecta a las cuestiones reproductivas, el papel determinante es jugado por las hembras y no por los machos. Vamos a plantear un modelo en el que se tienen en cuenta características particulares de cada uno de los individuos. Según estas características los agruparemos en clases que sean homogéneas a efectos reproductivos y de supervivencia.


Supongamos que la edad máxima alcanzada por una hembra de una población sea L años y que esta población la dividimos en n clases de edades. Cada clase, es evidente que tendrá L/n años de duración. Por lo tanto las clases serán:
$$[ 0\frac{L}{n}), [\frac{L}{n},\frac{2L}{n}),\cdots, [\frac{(n-1)L}{n},L) $$
Supongamos que en el momento inicial (t = 0) conocemos el número de hembras que hay en cada uno de los intervalos. Llamamos xi(0) al número de hembras existentes en el intervalo i-ésimo en el momento inicial. Podemos construir el vector de la distribución inicial de las edades: 
$$x(0)=(x_1(0),x_2(0), \cdots x_n(0))$$
Al pasar el tiempo, por causas biológicas (nacimientos, envejecimiento, muertes), el número de hembras que hay en cada una de las clases se va modificando. Lo que pretendemos es ver como evoluciona el vector x(0) de distribución inicial con el tiempo. La manera más fácil de proceder, para estudiar el proceso de envejecimiento es hacer observaciones de la población en tiempos discretos haciendo que la duración entre dos tiempos consecutivos de observación sea igual a la duración de los intervalos de edad:
$$ t_0=0, t_1=\frac{L}{n}, t_2=\frac{2L}{n}\cdots , t_k=\frac{kL}{n}, \cdots$$
Bajo esta hipótesis todas las hembras de la clase i+1 en el tiempo tk+1, estaban en la clase i en el tiempo tk (suponiendo que no existen muertes ni nacimientos). Se designa:
  • ai es el promedio de hijas que tiene una hembra mientras permanece en la clase i. Tiene que haber al menos un ai>0, es decir, una clase fértil.
  • bes la fracción de hembras de la clase i que sobreviven y pasan a la clase i+1. El valor de bi no puede ser cero, salvo en la última clase, pues entonces nadie sobreviviría a su clase. 
El vector general de distribución de edades para un tiempo tk es: $$x(k)=(x_1(k),x_2(k),\cdots,x_n(k))$$ El número de hembras en la primera clase en una etapa dada, dependerá de las nacidas en la etapa anterior:
$$x_1(k)=a_1x_1(k-1)+a_2x_2(k-1)+\cdots a_nx_n(k-1)$$ El número de hembras en la clase i+1 en una etapa dada será el número de supervivientes de la clase anterior: $$x_{i+1}(k)=b_ix_i(k-1)$$
Vectorialmente se expresará: $$x(k)=Lx(k-1)$$ siendo L la matriz de Leslie: $$L=\begin{bmatrix} a_1 & a_2 & \ldots & a_{n-1} & a_{n-1} \\ b_1 &0 & \ldots & 0 & 0\\ 0 &b_2 & \ldots & 0 & 0\\ \vdots & \vdots&\vdots&\vdots&\vdots \\ 0 & 0 &\ldots & b_{n-1}& 0\end{bmatrix}$$
De donde se deduce: $$x(k)=L^kx(0)$$ y por tanto conocida la distribución inicial y la matriz de Leslie se puede conocer la distribución de la población en cualquier etapa.

En la matriz de Leslie se obtiene un único valor propio positivo si hay al menos dos clases consecutivas fértiles (sucederá siempre que se consideren los intervalos suficientemente pequeños). El autovalor o valor propio debe cumplir:
$$Lv_1=\lambda_1 v_1$$ Para ese valor propio, se puede obtener su vector propio asociado:
$$v_1=(1,\frac{b_1}{\lambda_1},\frac{b_1b_2}{\lambda_1^2},\frac{b_1b_2b_3}{\lambda_1^3},\cdots,\frac{b_1b_2b_3\cdots b_{n-1}}{\lambda_1^{n-1}})$$  ¿Cuál será el comportamiento de la población a largo plazo? Se cumplirá: $$x(k)\simeq\lambda_1^k x(0)\rightarrow x(k)\simeq\lambda_1 x(k-1)$$
  • Cada distribución es proporcional a la distribución anterior, siendo esa constante el valor propio positivo de la matriz de Leslie.
  • La proporción de hembras en cada clase se mantiene constante según el vector propio.
  • La población a largo plazo:
    • Crece si el valor propio es mayor que uno.
    • La población decrece si el valor propio es menor que uno.
    • La población se estabiliza si el valor propio es uno.
Veamos un ejemplo: $$L=\begin{bmatrix} 0 & 4 & 3\\ \frac{1}{2} &0 & 0\\ 0 & \frac{1}{4} & 0\end{bmatrix}$$ Se calcula el valor propio: $$|L-\lambda I|=0 \rightarrow \lambda^3-2\lambda- \frac{3}{8}=0 \rightarrow \lambda_1=\frac{3}{2}$$ Se obtiene el vector propio: $$v_1=(1,\frac{b_1}{\lambda_1},\frac{b_1b_2}{\lambda^2})=(1,\frac{1}{3},\frac{1}{18})$$ El porcentaje de aumento de la población en cada etapa tiende a estabilizarse en un 50%: $$x(k)\simeq\frac{3}{2}x(k-1)$$ La proporción de hembras en cada clase se estabiliza en los porcentajes dados por el vector propio: $$x(k)\simeq (\frac{3}{2})^k(1,\frac{1}{3},\frac{1}{18})=(\frac{3}{2})^k(72\%,24\%,4\%)$$
Descargar .XLS
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Con las flechas se elige la población inicial en cada  clase de edad.
  • Con las flechas se elige el número de descendientes en cada  clase de edad.
  • Con las flechas se elige la tasa de supervivencia en las dos primeras clases de edad.
  • Con la flecha se elige el período temporal de cada etapa.
  • Se observa numéricamente la evolución de la distribución de clases.
  • Se observa numéricamente la evolución del crecimiento de las clases.
  • Se muestra la gráfica de la evolución de la distribución de clases.
  • Se muestra gráficamente la evolución del crecimiento de las clases.

martes, 29 de mayo de 2018

El problema de la dote del sultán

Un sultán tiene 100 hijas y decide dar la mano de una de ellas al súbdito que supere la siguiente prueba: Cada hija desfilará delante del pretendiente indicando la dote que tiene asignada. El súbdito sólo podrá casarse con la hija de mayor dote si adivina cuál de ellas es. Para ello debe decidir si la elige o prefiere continuar viendo el resto. Una vez rechazada una de las hijas, la decisión no se  puede cambiar. Se supone que todas las dotes son distintas y que no tiene información previa sobre su cuantía.

¿Cuál es la mejor estrategia para superar la prueba?

Una estrategia es dejar pasar n hijas y después elegir aquella que tenga una dote que supere a todas las precedentes (incluidas las n primeras).  ¿Cuál es el número n que maximiza la probabilidad de elgir la dote más alta?
Supongamos que hay 3 hijas, cuyas dotes se numeran de mayor (1) a menor (3). En la tabla se muestran las diferentes ordenaciones y para qué valor de n se obtiene la dote mayor. Se observa que cuando se descarta una hija, se consigue la mayor dote en tres casos: p(n=1)=3/6=1/2.

La probabilidad de acertar con N hijas habiendo rechazado las n primeras es:
$$\frac{1}{N} \frac{n}{n+k}$$
ya que acertamos si la mayor está en el puesto n+1, que ocurre con probabilidad 1/N. También si la mayor está en el puesto n+k+1 que ocurre con probabilidad 1/N y la mayor de las n+k precedentes está entre las n primeras, que ocurre con probabilidad n/(n+k).

La probabilidad de acertar es la suma de estas probabilidades extendidas a todos los valores posibles de k, desde 0 hasta N-n-1: $$p=\frac{n}{N} \left( \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+ \ldots +\frac{1}{N-1} \right)$$ 
Teniendo en cuenta la serie armónica:
$$H_n=1+\frac{1}{2}+\frac{1}{3}+\ldots + \frac{1}{n}$$
la probabilidad de acertar se puede expresar:
$$p=\frac{n}{N} \left(H_{N-1} - H_{n-1}\right)$$
Y como la serie armónica se puede aproximar con la fórmula que utiliza la constante de Euler-Mascheroni: $$H_n=ln(n)+\gamma$$ la probabilidad de éxito será: $$p=-\frac{n}{N}ln\left(\frac{n-1}{N-1}\right)$$
Cuando N y n son grandes, se puede aproximar a: $$p=-\frac{n}{N}ln\left(\frac{n}{N}\right)=-\alpha ln(\alpha)$$ Optimizando se obtiene: $$\alpha=\frac{n}{N}=\frac{1}{e}=0,3679\ldots$$ y por tanto habría que dejar pasar el 36,79% de las hijas antes de empezar a elegir una de ellas.

Descargar .XLS
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Con las flechas se elige el número de novias descartadas n.
  • Con el botón 'elige' se muestran las siguientes dotes, deteniéndose si una dote supera a las anteriores y se habilita el botón 'comprobar'.
  • El botón 'comprobar' muestra las dotes ocultas y se comprueba si ha habido éxito.
  • Con las flechas se elige el número de novias N y el número de novias descartadas n.
  • Se observa numérica y gráficamente las probabilidades de éxito para cada supuesto.

lunes, 26 de febrero de 2018

Principio de Wardrop

Supongamos que 1000 vehículos desean ir de A a B y tienen dos formas de hacerlo: ACB (ADB). Ambas rutas tienen un tramo de autopista AC (DB) en los que se tarda un tiempo que no depende del número de vehículos debido a su alta capacidad y un tramo CB (AD), que al ser una vía convencional, en el que el tiempo aumenta 1 minuto por cada 100 vehículos que la transitan.
Si se elige la ruta ACB:
$$t_{AC}+t_{CB}=t_{AC}+\frac{X_{CB}}{100}$$ Si en esta ruta se tardan 15 minutos por autopista y circulan 600 vehículos, el tiempo total empleado será: $$t_{ACB}=15+\frac{600}{100}=21$$
Si se elige la ruta ADB:
$$t_{AD}+t_{DB}=\frac{X_{AD}}{100}+t_{DB}$$
Si en esta ruta se tardan 10 minutos por autopista y circulan 400 vehículos, el tiempo total empleado será:  $$t_{ADB}=\frac{400}{100}+10=14$$ Una parte de los conductores, los más avispados, que fueron por la ruta ACB eligirán la próxima vez la ruta ADB que es más rápida. Esto hará que ahora la ruta ADB sea más rápida (menos vehículos) pero la ruta ADB no lo sea tanto (más vehículos). El proceso seguirá hasta alcanzar un equilibrio que se producirá cuando los tiempos de viaje sean los mismos para ambos trayectos. A nadie le interesará cambiar en el próximo viaje.

Estamos ante un Equilibrio de Nash de la teoría de juegos: no hay cambio de estrategia individual que permita a un jugador aumentar su 'ganancia'.

En el ejemplo: $$t_{ACB}=t_{ADB}$$ $$15+\frac{250}{100}=\frac{750}{100}+10=17.5$$
 Principio de Wardrop (1952):

Los tiempos de viaje en todas las rutas es igual (entre ellas), y menor al tiempo que experimentaría cualquier vehículo que decidiera cambiar a otra ruta.
Descargar .XLS
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:

  • Con las flechas se puede modificar el número de vehículos iniciales por la ruta A.
  • Con las flechas se obtiene la evolución de los tiempos y vehículos en cada ruta.
  • Con la flechas se pueden fijar los tiempos por autopista.
  • Se muestran los valores de equilibrio de tiempo y vehículos.

sábado, 15 de abril de 2017

Fórmulas electorales (III)

Vamos a ver nuevos métodos de reparto, no estrictamente proporcionales, que utilizan una sucesión creciente de divisores: $$d_1< d_2 < d_3 < \ldots d_n$$donde n es el número de escaños a repartir. Los votos obtenidos por cada partido son divididos sucesivamente por esos n divisores. Se asignan escaños a las n mayores cantidades obtenidas.
  • Ley de Hill-Huntington:
  • El matemático americano Edward V, Hutington (174-1952)  y el estadístico del U.S. Census Bureau Joseph A. Hill (1860.1938)  idearon una nueva fórmula de reparto mediante divisores. Utilizar como divisores la media geométrica de dos enteros consecutivos:
    $$G(a,b)=\sqrt{a \cdot b}$$
     Se aplica la fórmula a cada uno de los candidatos: $$q_{i,k}=[\frac{v_i}{\sqrt{k_i\cdot (k_i+1)}}],\; k\neq 0,\; q_{i,0}=v_i\; \; \;k=0,1,2, \ldots$$
     y los escaños se van asignando a las candidaturas que obtengan los números más altos en estas divisiones, en orden decreciente, hasta completar el total de escaños.
  • Ley de Dean:
  • James Dean (1776-1849), matemático y profesor de historia natural de la Universidad de Vertmon lo desarrolló en 1832, como alternativa al método de Jefferson, aunque nunca llegó a aplicarse. Utiliza como divisores la media armónica de dos enteros consecutivos:
    $$H(a,b)=\frac{2}{\frac{1}{a}+\frac{1}{b}}=\frac{2 \cdot a \cdot b}{a+b+1}$$ quien la propuso unos años antes aunque con alguna pequeña diferencia.  Se aplica la fórmula a cada uno de los candidatos:$$q_{i,k}=[\frac{v_i}{\frac{2 \cdot k \cdot (k+1)}{2 \cdot k+1}}],\; k\neq 0,\; q_{i,0}=v_i\; \; \;k=0,1,2, \ldots$$
    y los escaños se van asignando a las candidaturas que obtengan los números más altos en estas divisiones, en orden decreciente, hasta completar el total de escaños.

jueves, 23 de marzo de 2017

Fórmulas electorales (II)

Vamos a ver otros métodos de reparto, no estrictamente proporcionales, que utilizan una sucesión creciente de divisores: $$d_1< d_2 < d_3 < \ldots d_n$$donde n es el número de escaños a repartir. Los votos obtenidos por cada partido son divididos sucesivamente por esos n divisores. Se asignan escaños a las n mayores cantidades obtenidas.
  • Ley D'Hont:
  • Su nombre se debe a Victor D'Hondt (1841-1901), jurista belga que lo propuso en 1878. En realidad este método fue propuesto por Thomas Jefferson (1743-1826), tercer presidente de los Estados Unidos, del que también recibe su nombre, y lo introdujo para el reparto de escaños en los EEUU en 1794.  Se aplica la fórmula a cada uno de los candidatos:$$q_{i,k}=[\frac{v_i}{k+1}]\; \; \;k=0,1,2, \ldots$$ y los escaños se van asignando a las candidaturas que obtengan los números más altos en estas divisiones, en orden decreciente, hasta completar el total de escaños.
  • Ley de Sainte-Laguë:
  • También conocida por el nombre de Ley de Webster. Aunque introducida por André Sainte-Laguë (1852-1950), matemático francés en 1910, fue Daniel Webster (1782-1852), senador de los EEUU en el siglo XIX, quien la propuso unos años antes aunque con alguna pequeña diferencia.  Se aplica la fórmula a cada uno de los candidatos:$$q_{i,k}=[\frac{v_i}{2k+1}]\; \; \;k=0,1,2, \ldots$$ 
    y los escaños se van asignando a las candidaturas que obtengan los números más altos en estas divisiones, en orden decreciente, hasta completar el total de escaños.

miércoles, 22 de febrero de 2017

Fórmulas electorales (I)

Una fórmula electoral es el cálculo matemático mediante el cual, después de una votación, se distribuyen los escaños de una asamblea en función de los votos del electorado. Las fórmulas electorales se clasifican en dos grandes tipos: mayoritarias y proporcionales o de reparto.
Las formas mayoritarias pretenden la elección de un único candidato, con exclusión de los demás. El candidato ganador es el que obtiene el mayor número votos en relación con sus rivales electorales. Se suelen aplicar en circunscripciones uninominales. Aunque existen distintas variantes, las más conocidas son:
  • Mayoría absoluta:
  • También conocida como Fórmula de Mayoría, el ganador debe alcanzar más del 50% de los votos. No es una fórmula muy utilizada porque aunque da estabilidad, favorece a los partidos mayoritarios pero perjudica a las minorías que difícilmente obtienen representación. En concreto en Francia se establece un mecanismo corrector: Cuando no se alcanza ese porcentaje, se establece una segunda vuelta o ballotage entre los dos candidatos más votados.
  • Mayoría relativa:
  • Conocida también como Fórmula Pluralista, no exige la obtención de mayorías absolutas, sino de mayorías relativas o simples. El porcentaje para obtener la elección aumenta o disminuye en función del número de partidos o candidatos en liza. Cuanto mayor sea el número de éstos, más bajo será el porcentaje necesario para resultar elegido, y al contrario, cuanto más reducido sea el número de candidatos que se presenten, mayor será el porcentaje requerido.
La fórmulas proporcionales tienen como objetivo repartir los escaños de cada circunscripción de manera proporcional a los votos obtenidos por cada partido. Los métodos del Resto Mayor, también conocidos como de Cociente o Cuota utilizan el sistema proporcional para el reparto de escaños. Para los escaños no asignados se utilizan los restos, a los que se les aplica el sistema mayoritario.

Sean n escaños a repartir entre varios partidos y un total de v votos. Se establece un cociente q que indica el número de votos necesarios para obtener un escaño. De esta forma se asignan escaños a cada partido de acuerdo con sus votos obtenidos. Los escaños no asignados se conceden según los restos de cada partido de mayor a menor. Existen tres fórmulas proporcionales:
  • Fórmula Hare: q=v/n
  • Fórmula Droop: q=v/(n+1)
  • Fórmula Imperiali: q=v/(n+2)

jueves, 20 de octubre de 2016

Un juego 'burro' (II)

Como vimos, hay juegos en los que las ganancias disminuyen cuando aumenta la probabilidad de ganar en cada turno. Son los denominados donkey games o 'juegos burro'.

Recordemos el funcionamiento del juego:

Una moneda tiene una probabilidad p de salir cara (C) y una probabilidad 1-p de salir cruz (X). Se realizan series de lanzamientos. En cada turno si sale cara se gana un euro, si sale cruz se pierde un euro y si sale lo mismo que en la tirada anterior se cancela la ganancia o la pérdida. Por ejemplo, en la secuencia XCCC la ganancia será cero. Si p=0.5 el juego es justo y la ganancia media es cero. En cambio si p aumenta el jugador termina perdiendo y si p disminuye el jugador termina ganando.
Supongamos muchos jugadores participando simultáneamente y observamos un turno determinado: Sea N0 el número de jugadores sin ganancia ni pérdida,  N1 con ganancia  N2 con pérdida en un turno determinado.
En el turno siguiente, el número de jugadores sin ganancia ni pérdida será: $$N_0'=pN_1+(1-p)N_2$$ pues sale cara y había cara o sale cruz y había cruz.
El número de jugadores con ganancia será: $$N_1'=pN_0+pN_2$$ pues sale cara y no había nada o sale cara y había cruz.
El número de jugadores con pérdida será:
$$N_2'=(1-p)N_0+(1-p)N_1$$ pues sale cruz y no había nada o sale cruz y había cara.

domingo, 18 de septiembre de 2016

Un juego 'burro' (I)

Aunque parezca paradójico, hay juegos en los que las ganancias disminuyen cuando aumenta la probabilidad de ganar en cada turno. Se denominan donkey games o 'juegos burro'. Christian van den Broeck y Bart Cleuren, físicos del Centro Universitario de Limburg, en Bélgica, estudian este tipo de juegos.Veamos uno de ellos:

Una moneda tiene una probabilidad p de salir cara (C) y una probabilidad 1-p de salir cruz (X). Se realizan series de lanzamientos. En cada turno si sale cara se gana un euro, si sale cruz se pierde un euro y si sale lo mismo que en la tirada anterior se cancela la ganancia o la pérdida. Por ejemplo, en la secuencia XCCC la ganancia será cero. Si p=0.5 el juego es justo y la ganancia media es cero. En cambio si p aumenta el jugador termina perdiendo y si p disminuye el jugador termina ganando.
Supongamos muchos jugadores participando simultáneamente y observamos un turno determinado: Sea N0 el número de jugadores sin ganancia ni pérdida,  N1 con ganancia  N2 con pérdida en un turno determinado.
En el turno siguiente, el número de jugadores sin ganancia ni pérdida será: $$N_0'=pN_1+(1-p)N_2$$ pues sale cara y había cara o sale cruz y había cruz.
El número de jugadores con ganancia será: $$N_1'=pN_0+pN_2$$ pues sale cara y no había nada o sale cara y había cruz.
El número de jugadores con pérdida será:
$$N_2'=(1-p)N_0+(1-p)N_1$$ pues sale cruz y no había nada o sale cruz y había cara.

 Las soluciones estacionarias se obtienen cuando, después de muchas iteraciones, los nuevos valores coinciden con los anteriores. Resolviendo el sistema:
$$\begin{eqnarray*} N_0 = pN_1+(1-p)N_2 \\ N_1=pN_0+pN_2 \\ N_2=(1-p)N_0+(1-p)N_1 \end{eqnarray*}$$ se obtienen las soluciones: $$N_1=\frac{p(2-p)}{p^2-p+1}N_0 \wedge N_2=\frac{1-p^2}{p^2-p+1}N_0$$ La ganancia en un turno es: $$G=pN_0-(1-p)N_0-N_1+N_2=$$ $$(2p-1)N_0-\frac{p(2-p)}{p^2-p+1}N_0+\frac{1-p^2}{p^2-p+1}N_0=\frac{p(p-1)(2p-1)}{p^2-p+1}N_0$$ El número total de jugadores es: $$N_0+N_1+N_2=N_0+\frac{p(2-p)}{p^2-p+1}N_0+\frac{1-p^2}{p^2-p+1}N_0=$$ $$\frac{-p^2+p+2}{p^2-p+1}N_0=\frac{-(p+1)(p-2)}{p^2-p+1}N_0$$ La ganancia media es: $$\overline{G}=\frac{\frac{p(p-1)(2p-1)}{p^2-p+1}}{\frac{-(p+1)(p-2)}{p^2-p+1}}=\frac{p(1-p)(1-2p)}{(1+p)(2-p)}$$