viernes, 6 de diciembre de 2024

Sucesión de Connell

La sucesión de Connell es una sucesión de números naturales construida de la siguiente manera: empezamos anotando el primer impar, luego los dos siguientes pares, los tres siguientes impares,…. Y así, sucesivamente, formando la sucesión: $$1, 2, 4, 5, 7, 9, 10, 12, 14, 16, \dots$$ El término general de esta sucesión viene dado por la expresión: $$C_n=2n-\lfloor \frac{1}{2} \sqrt{8n+7}+1\rfloor$$ Para términos, suficientemente avanzados, se cumple: $$ \lim \limits _{n \rightarrow \infty} \frac{C_n}{n}=2$$ Las subsucesiones son: $$ S_1=\{1\}, S_2=\{2,4\}, S_3=\{5,7,9\}, S_4=\{10,12,14,16\} \dots$$ Los números triangulares (poligonales de orden 3) se obtienen con la fórmula: $$T(n)=P_3(n)=\frac{1}{2}n(n+1) \rightarrow 1, 3, 6, 10, ...\dots$$ Observando los últimos números de cada subsucesión se cumple: $$C(T_n)=n^2$$ Stevens generalizó la sucesión de Connell, donde el término general es: $$C_{m,r} \wedge m \geq 2 \wedge r \geq 1$$ Se parte del entero 1 que es un número congruente con 1 (mod m); le sigue el entero 1+r congruente con 2 (mod m); luego el entero 1+2r congruente con 3 (mod m) y así sucesivamente. Si m=2 y r=1 (los valores mínimos) se obtiene la sucesión de Connell. De forma más detallada se tiene su definición:
  • La sucesión está formada por subsucesiones concatendas S1, S2, S3,...
  • La subsucesión S1 está formada por el elemento 1.
  • Si la subsucesión Sn termina en el elemento e, la subsucesión Sn+1 empieza en e+1.
  • Si la subsucesión Sn contiene t términos, la subsucesión Sn+1 contiene t+r términos.
  • Si la sucesión es creciente y la diferencia entre dos términos consecutivos de la misma subsucesión es m.
Sea la sucesión: C3,2: 1;2,5,8;9,12,15,18,21;22,25,28,31,34,37,40,...

Los números octogonales (poligonales de orden 8) se obtienen con la fórmula: $$P_8(n)=n(3n-2) \rightarrow 1, 8, 21, 40, ...\dots$$ Observando los últimos números de cada subsucesión se cumple: $$P_8(n)=C_{3,2}(n^2)$$ Sea la sucesión: C3,1: 1;2,5;6,9,12;13,16,19,22;23,26,29,32,35...

Los números pentagonales (poligonal de orden 5) se obtienen con la fórmula: $$P_5(n)=\frac{1}{2}n(3n-1) \rightarrow 1, 5, 12, 22, 35...\dots$$ Se observa que los últimos números de cada subsucesión son P5(n).

Hay una fórmula general para los números poligonales: $$P_k(n)=\frac{1}{2}n[(k-2)n-k+4]$$ que se puede comprobar su validez para los casos anteriores y obtener P4(n): $$P_3(n), P_5(n), P_8(n), P_4(n)=n^2$$. También existe otra fórmula general que relaciona las sucesiones generalizadas de Connell con los número poligonales: $$C_{m,r}[P_{r+2}(n)]=P_{m\cdot r+2}(n)$$ que se puede aplicar a dos casos anteriores: $$C_{2,1}[P_3(n)]=P_4(n) \wedge C_{3,2}[P_4(n)]=P_8(n)$$ Para términos suficientemente avanzados, se cumple: $$ \lim \limits _{n \rightarrow \infty} \frac{C_{m,r}(n)}{n}=m$$

miércoles, 30 de octubre de 2024

Incendio forestal (II)

En el modelo se considera un terreno rectangular de 20X40 puntos en los que se pueden plantar hasta 800 árboles entre pinos (P) y robles (M). Se considera que el fuego no afecta apenas a los robles pero sí a los pinos. El simulador permite elegir el porcentaje de pinos y robles plantados que son situados en el terreno de forma aleatoria. Puede haber varios focos de fuego que se sitúan de manera aleatoria en el terreno. El incendio se propaga en cualquier dirección de forma que un pino ardiendo prende a los pinos cercanos pero no afecta a los robles. En un momento determinado el fuego se detiene al no poder propagarse más.

¡Una reforestación combinada con árboles resistentes al fuego reduce el impacto de un incendio!
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • El botón 'iniciar' limpia de árboles el terreno.
  • Las primeras flechas permiten elegir el porcentaje de pinos plantados.
  • Las segundas flechas permiten elegir el porcentaje de robles plantados.
  • El botón 'plantar' muestra los árboles reales plantados y su porcentaje.
  • El botón 'fuego' pone cada vez un punto de inicio del fuego.
  • El botón 'incendio' muestra el resultado del incendio, los pinos quemados y su porcentaje.
Descargar .XLS

domingo, 29 de septiembre de 2024

Problema de Thanos Kalogerakis (2017)

BC es el diámetro de un circulo; M es el punto medio del arco inferior BC; A es un punto en el arco superior BC. El punto D está en la semirrecta que pasa por A y B de forma que MD es perpendicular a AB; el punto E está en la semirrecta que pasa por A y C de forma que ME es perpendicular a AC. Se cumple que: $$\frac{AB}{MD}+\frac{AC}{ME}=2$$
DEMOSTRACIÓN
En primer lugar, ADME es un cuadrado porque, debido a que M es el punto medio del arco que subtiende el ángulo BAC (que es recto), los ángulos DAM=EAM=45º y, posteriormente, dado que ADME es claramente un rectángulo, los ángulos AMD=AME=45º, lo que hace que ADME sea un cuadrado. $$AB=AD-BD=MD-BD$$ $$AC=AE+EC=MD+EC$$ $$AB+AC=2MD+EC-BD$$ Los triángulos BMD y CME son iguales al ser rectángulos, MD=ME y los ángulos CME=BMD. Por tanto EC=BD. $$AB+AC=2MD \rightarrow \frac{AB}{MD}+\frac{AC}{MD}=\frac{AB}{MD}+\frac{AC}{ME}=2$$
  • Se pueden mover el centro del círculo y el punto C para dimensionar y desplazar la figura.
  • Moviendo el punto A a lo largo del semicírculo se comprueba la propiedad.
  • Se puede ver la construcción 'paso a paso'.
  • .

viernes, 30 de agosto de 2024

Incendio forestal (I)

En el modelo se considera un terreno rectangular de 20X40 puntos en los que se pueden plantar hasta 800 pinos (P). El simulador permite elegir el porcentaje de pinos plantados que son situados en el terreno de forma aleatoria. El foco del fuego se produce en la primera fila del rectángulo, donde se puede elegir el porcentaje de pinos afectados (Q) . El incendio se propaga de arriba a abajo, debido a la dirección del viento, de forma que un pino ardiendo prende a los pinos cercanos situados más abajo. En un momento determinado el fuego se detiene al no poder propagarse más.

¡Una reforestación excesiva y sin criterio puede ser contraproducente!
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • El botón 'iniciar' limpia de árboles el terreno.
  • Las primeras flechas permiten elegir el porcentaje de árboles plantados.
  • El botón 'plantar' muestra los árboles reales plantados y su porcentaje.
  • Las segundas flechas permiten elegir el porcentaje de árboles que inician el incendio.
  • El botón 'quemar' muestra los árboles reales que inician el fuego y su porcentaje.
  • El botón 'incendio' muestra el resultado del incendio, los árboles quemados y su porcentaje.
Descargar .XLS

sábado, 15 de junio de 2024

Selectividad Ciencias Sociales-2023/2024

A continuación aparecen los enunciados y las soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y de julio para el bachillerato de ciencias sociales del curso 23/24.

Enunciados y soluciones de junio
Enunciados y soluciones de julio