sábado, 23 de diciembre de 2017

Alhacén y la cúbica de Barrow

Alhacén esta considerado como el padre de la óptica por sus trabajos sobre lentes, espejos, reflexión y refracción. En su obra principal Kitab al-Manazir (Libro de Óptica) plantea el problema siguiente:
En un plano se tiene una circunferencia y dos puntos exteriores A y B. Si la circunferencia funciona como un espejo se trata de encontrar el punto P de la circunferencia donde el rayo incidente desde A se refleje en el punto B. Para ello los ángulos deben ser iguales según la ley de la reflexión.
Lo resuelve de una manera muy tediosa y complicada por lo que matemáticos posteriores encuentran soluciones más sencillas. Isaac Barrow publicó en Cambridge Lectures en 1966 una solución al llamado 'Problema de Alhacén':
Dados dos puntos A(a,b) y B(c,d), se trata de encontrar sobre cualquier recta que pasa por el origen, un punto P(x,y) de forma que los ángulos que forman PA y PB con la recta sean iguales.

En el triángulo OPQ se tiene:
$$\alpha+\phi+(180-\theta)=180\rightarrow\alpha=\theta-\phi$$ Como: $$\tan \phi=\frac{y}{x} \wedge \tan \theta=\frac{b-y}{a-x}$$ se tiene que: $$\tan \alpha=\tan(\theta - \phi)=\frac{\tan \theta-\tan \phi}{1+\tan\theta·\tan \phi}=\frac{bx-ay}{ax+by-(x^2+y^2)}$$ Mediante un razonamiento análogo se obtiene: $$\tan \beta=\frac{cy-dx}{cx+dy-(x^2+y^2)}$$ Igualando ambas expresiones, eliminando denominadores y agrupando términos semejantes se obtiene: $$(x^2+y^2)[(b+d)x-(a+c)y]-(ad+bc)x^2$$ $$+(ad+bc)y^2+2(ac-bd)xy=0$$ Si se sitúan los puntos A y B de forma que el eje de abscisas sea la bisectriz del ángulo AOB, y entonces la ecuación se simplifica porque:
$$\frac{b}{a}=\frac{d}{c}\rightarrow bc+ad=0$$
Finalmente la ecuación se puede expresar de la forma: $$(x^2+y^2)(px+qy)+xy=0$$ siendo:
$$p=\frac{b+d}{2(ac-bd)} \wedge q=\frac{a+c}{2(ac-bd)} $$

Esta ecuación representa una curva algebraica de tercer grado. Si se centra la circunferencia en el origen de coordenadas, los puntos en los cuales ésta es cortada por la cúbica resuelven el problema. De las tres soluciones, sólo una tiene sentido físico.

Se pueden desplazar los puntos A y B mostrando sus coordenadas. Al mover el punto C se fija el tamaño de la circunferencia. Se comprueba, moviendo el punto P de la circunferencia, que cuando los ángulos coinciden el punto pertenece a la curva y por tanto es la solución. El botón 'curva' permite visualizarla o no.
  • Del libro Alhacén, el Arquímedes árabe. Ricardo Moreno Castillo.
    La Matemática en sus personajes. Editorial Nivola.

lunes, 27 de noviembre de 2017

Algoritmo de Irving

El llamado The Stable Rommates Problem o 'Problema de las Compañeras de Piso' fue resuelto mediante un algoritmo por Robert W. Irving en 1985. Cada participante ordena a sus posibles compañeras según sus preferencias. Cada chica elige una compañera y ésta acepta o no la oferta. En caso de no aceptar se entiende que rechaza a la chica que le ha hecho la propuesta. En el ejemplo de la tabla el AZUL indica la elegida, el VERDE la que acepta y el ROJO la rechazada.
  • 1ª ETAPA
    • Cada chica propone a su compañera favorita.
    • La elegida acepta, pero si es elegida por más de una, acepta la mejor propuesta y rechaza las demás.
    • Las rechazadas esperan para ser aceptadas más adelante.
    • Si alguna chica es rechazada por todas no existe una solución estable.
Aunque Berta elige a Delia, ella prefiere a Clara y es rechazada. Igualmente, aunque Eva elige a Flor, ella prefiere a Delia y es rechazada.
Ahora Berta propone a Eva que acepta y Eva propone a Clara que acepta.
  • 2ª ETAPA
    • Todas desechan las posibles compañeras que son menos deseadas que la actualmente aceptada.
Ana rechaza a Clara y a Eva, Berta rechaza a Clara, y así sucesivamente.
Así las opciones quedan reducidas a las siguientes:
  • 3ª ETAPA
    • Elige una participante X que tenga al menos dos opciones.
    • Busca su segunda preferencia Y.
    • Sea Z la última preferencia de Y.
    • Repite el proceso hasta que se llegue a X.
    • Elimina las parejas (Y,Z) y sus simétricas.
    • Repite el proceso hasta que todas tengan una única opción.
Los emparejamientos son: Ana y Flor, Berta y Eva, Clara y Delia.
En este caso no hay una solución estable, pues nadie quiere ir con D.

jueves, 12 de octubre de 2017

Algoritmo de Gale-Shapley

El llamado The Stable Marriage Problem o 'Problema de las Parejas Estables' fue planteado y resuelto mediante un algoritmo por David Gale y Lloyd Shapley en 1962. Su aplicación más conocida es la asignación de estudiantes de medicina recién graduados a los hospitales correspondientes.

Cada chico ordena a sus posibles compañeras según sus preferencias y viceversa. En el ejemplo de la tabla el VERDE indica si forman pareja y el ROJO si no pueden ser pareja por el rechazo de la chica.
  • Cada chico invita a bailar a su primera opción.
  • Cada chica evalúa las propuestas, escoge la mejor y desecha las demás.
  • Cada chico rechazado invita a bailar a su segunda opción, aunque en ese momento esté con otro.
  • Se itera el proceso hasta que todas las chicas tengan una única invitación.
Todos eligen a su chica preferida, pero como Julia prefiere a Mateo, rechaza a Pedro.
Diego elige a Laura que prefiere seguir con Jorge y rechaza a Diego.
Diego elige a Elena que estaba con Pedro y lo deja porque prefiere a Diego.
Esto obliga a Pedro a elegir a Laura que acepta renunciando a Jorge.
Finalmente Jorge elige a Paula que acepta y las parejas estables son:
(Diego,Elena), (Jorge,Paula), (Mateo,Julia) y (Pedro,Laura).

¡¡¡ Siempre hay un emparejamiento estable!!!

miércoles, 13 de septiembre de 2017

Método de Descartes

Es un método gráfico de resolución de ecuaciones algebraicas de 3º y 4º grado.

Una ecuación de 3º grado: $$z^3+az^2+cz+d=0$$ se convierte mediante el cambio: $$z=x-\frac{a}{3}$$ en una ecuación de 3º grado del tipo: $$x^3+px+q=0 \; (1)$$ Una ecuación de 4º grado: $$z^4+az^3+bz^2+cz+d=0$$ se convierte mediante el cambio: $$z=x-\frac{a}{4}$$ en una ecuación de 4º grado del tipo: $$x^4+px^2+qx+r=0 \; (2)$$ Si r=0, al simplificar se obtiene la ecuación (1) y se elimina la solución x=0. Si se resuelve el sistema formado por la circunferencia y la parábola: $$(x-a)^2+(y-b)^2=R^2, \; y=x^2$$ se obtiene la ecuación (2) si: $$p=1-2b, \; q=-2a, \; r=a^2+b^2-R^2$$ Entonces el centro y el radio de la circunferencia son: $$a=-\frac{q}{2}, \; b=\frac{1-p}{2}, \;R^2=\frac{q^2}{4}+\frac{(1-p)^2}{4}-r$$ y las soluciones de la ecuación (2) son las abscisas de los puntos de intersección de la circunferencia con la parábola.

Modificando los valores de p, q y r mediante los deslizadores, se obtiene el centro y el radio de la circunferencia y las soluciones de la ecuación de forma gráfica.

martes, 20 de junio de 2017

Selectividad ciencias sociales-Curso 16/17

A continuación aparecen los enunciados y las soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y de julio para el bachillerato de ciencias sociales del curso 16/17.

Enunciados y soluciones de junio
Enunciados y soluciones de julio

Selectividad ciencias-Curso 16/17

A continuación aparecen los enunciados y las soluciones de los problemas de selectividad de la Comunidad Valenciana en formato .pdf, de junio y de julio para el bachillerato de ciencias del curso 16/17.

Enunciados y soluciones de junio
Enunciados y soluciones de julio

martes, 6 de junio de 2017

Bancarrota y El Talmud (I)

Los llamados problemas de bancarrota hacen referencia a situaciones de reparto de un bien escaso. Se muestran tres métodos de reparto diferentes. Sea E el total del bien a repartir, que es inferior a la demanda total  D de un conjunto de acreedores. La cantidad recibida y la demanda solicitada por el acreedor i son, respectivamente: $$r_i \wedge d_i$$
  • Regla Igual Ganancia:
  • $$r_i=IG_i(E,d)=\min (d_i,\lambda)$$ siendo 'lambda' la solución de la ecuación: $$\sum_{i=1}^{n}r_i=\sum_{i=1}^{n}\min (d_i,\lambda)=E$$
  • Regla Igual Perdida:
  • $$r_i=IP_i(E,d)=\max (0,d_i-\lambda)$$ siendo 'lambda' la solución de la ecuación: $$\sum_{i=1}^{n}r_i= \sum_{i=1}^{n}\max (0,d_i-\lambda)=E$$
  • Regla del Talmud:
  • Si la cantidad a repartir es menor o igual que la mitad de la demanda: $$E \leq \frac{D}{2}$$ $$r_i=T_i(E,d)=\min (\frac{d_i}{2},\lambda)$$ siendo 'lambda' la solución de la ecuación: $$\sum_{i=1}^{n}r_i=\sum_{i=1}^{n}\min (\frac{d_i}{2},\lambda)=E$$ Si la cantidad a repartir es mayor o igual que la mitad de la demanda: $$E \geq \frac{D}{2}$$ $$r_i=T_i(E,d)=\max (\frac{d_i}{2},d_i-\lambda)$$ siendo 'lambda' la solución de la ecuación: $$\sum_{i=1}^{n}r_i=\sum_{i=1}^{n}\max (\frac{d_i}{2},d_i-\lambda )=E$$
Descargar .XLS
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Con las flechas se pueden modificar las demandas de los acreedores.
  • Con las flechas se obtienen los valores recibidos por cada acreedor.
  • Con la flechas se puede elegir el valor del bien a repartir.
  • Con la flechas se busca el valor de 'lambda' solución de la ecuación.
  • Este valor es el que hace coincidir E con E', siendo E' los repartos que se obtienen para otros valores de 'lambda'.
  • En el modelo del Talmud una línea de valor D/2 muestra qué fórmula se aplica en cada caso.

sábado, 15 de abril de 2017

Fórmulas electorales (III)

Vamos a ver nuevos métodos de reparto, no estrictamente proporcionales, que utilizan una sucesión creciente de divisores: $$d_1< d_2 < d_3 < \ldots d_n$$donde n es el número de escaños a repartir. Los votos obtenidos por cada partido son divididos sucesivamente por esos n divisores. Se asignan escaños a las n mayores cantidades obtenidas.
  • Ley de Hill-Huntington:
  • El matemático americano Edward V, Hutington (174-1952)  y el estadístico del U.S. Census Bureau Joseph A. Hill (1860.1938)  idearon una nueva fórmula de reparto mediante divisores. Utilizar como divisores la media geométrica de dos enteros consecutivos:
    $$G(a,b)=\sqrt{a \cdot b}$$
     Se aplica la fórmula a cada uno de los candidatos: $$q_{i,k}=[\frac{v_i}{\sqrt{k_i\cdot (k_i+1)}}],\; k\neq 0,\; q_{i,0}=v_i\; \; \;k=0,1,2, \ldots$$
     y los escaños se van asignando a las candidaturas que obtengan los números más altos en estas divisiones, en orden decreciente, hasta completar el total de escaños.
  • Ley de Dean:
  • James Dean (1776-1849), matemático y profesor de historia natural de la Universidad de Vertmon lo desarrolló en 1832, como alternativa al método de Jefferson, aunque nunca llegó a aplicarse. Utiliza como divisores la media armónica de dos enteros consecutivos:
    $$H(a,b)=\frac{2}{\frac{1}{a}+\frac{1}{b}}=\frac{2 \cdot a \cdot b}{a+b+1}$$ quien la propuso unos años antes aunque con alguna pequeña diferencia.  Se aplica la fórmula a cada uno de los candidatos:$$q_{i,k}=[\frac{v_i}{\frac{2 \cdot k \cdot (k+1)}{2 \cdot k+1}}],\; k\neq 0,\; q_{i,0}=v_i\; \; \;k=0,1,2, \ldots$$
    y los escaños se van asignando a las candidaturas que obtengan los números más altos en estas divisiones, en orden decreciente, hasta completar el total de escaños.

jueves, 23 de marzo de 2017

Fórmulas electorales (II)

Vamos a ver otros métodos de reparto, no estrictamente proporcionales, que utilizan una sucesión creciente de divisores: $$d_1< d_2 < d_3 < \ldots d_n$$donde n es el número de escaños a repartir. Los votos obtenidos por cada partido son divididos sucesivamente por esos n divisores. Se asignan escaños a las n mayores cantidades obtenidas.
  • Ley D'Hont:
  • Su nombre se debe a Victor D'Hondt (1841-1901), jurista belga que lo propuso en 1878. En realidad este método fue propuesto por Thomas Jefferson (1743-1826), tercer presidente de los Estados Unidos, del que también recibe su nombre, y lo introdujo para el reparto de escaños en los EEUU en 1794.  Se aplica la fórmula a cada uno de los candidatos:$$q_{i,k}=[\frac{v_i}{k+1}]\; \; \;k=0,1,2, \ldots$$ y los escaños se van asignando a las candidaturas que obtengan los números más altos en estas divisiones, en orden decreciente, hasta completar el total de escaños.
  • Ley de Sainte-Laguë:
  • También conocida por el nombre de Ley de Webster. Aunque introducida por André Sainte-Laguë (1852-1950), matemático francés en 1910, fue Daniel Webster (1782-1852), senador de los EEUU en el siglo XIX, quien la propuso unos años antes aunque con alguna pequeña diferencia.  Se aplica la fórmula a cada uno de los candidatos:$$q_{i,k}=[\frac{v_i}{2k+1}]\; \; \;k=0,1,2, \ldots$$ 
    y los escaños se van asignando a las candidaturas que obtengan los números más altos en estas divisiones, en orden decreciente, hasta completar el total de escaños.

miércoles, 22 de febrero de 2017

Fórmulas electorales (I)

Una fórmula electoral es el cálculo matemático mediante el cual, después de una votación, se distribuyen los escaños de una asamblea en función de los votos del electorado. Las fórmulas electorales se clasifican en dos grandes tipos: mayoritarias y proporcionales o de reparto.
Las formas mayoritarias pretenden la elección de un único candidato, con exclusión de los demás. El candidato ganador es el que obtiene el mayor número votos en relación con sus rivales electorales. Se suelen aplicar en circunscripciones uninominales. Aunque existen distintas variantes, las más conocidas son:
  • Mayoría absoluta:
  • También conocida como Fórmula de Mayoría, el ganador debe alcanzar más del 50% de los votos. No es una fórmula muy utilizada porque aunque da estabilidad, favorece a los partidos mayoritarios pero perjudica a las minorías que difícilmente obtienen representación. En concreto en Francia se establece un mecanismo corrector: Cuando no se alcanza ese porcentaje, se establece una segunda vuelta o ballotage entre los dos candidatos más votados.
  • Mayoría relativa:
  • Conocida también como Fórmula Pluralista, no exige la obtención de mayorías absolutas, sino de mayorías relativas o simples. El porcentaje para obtener la elección aumenta o disminuye en función del número de partidos o candidatos en liza. Cuanto mayor sea el número de éstos, más bajo será el porcentaje necesario para resultar elegido, y al contrario, cuanto más reducido sea el número de candidatos que se presenten, mayor será el porcentaje requerido.
La fórmulas proporcionales tienen como objetivo repartir los escaños de cada circunscripción de manera proporcional a los votos obtenidos por cada partido. Los métodos del Resto Mayor, también conocidos como de Cociente o Cuota utilizan el sistema proporcional para el reparto de escaños. Para los escaños no asignados se utilizan los restos, a los que se les aplica el sistema mayoritario.

Sean n escaños a repartir entre varios partidos y un total de v votos. Se establece un cociente q que indica el número de votos necesarios para obtener un escaño. De esta forma se asignan escaños a cada partido de acuerdo con sus votos obtenidos. Los escaños no asignados se conceden según los restos de cada partido de mayor a menor. Existen tres fórmulas proporcionales:
  • Fórmula Hare: q=v/n
  • Fórmula Droop: q=v/(n+1)
  • Fórmula Imperiali: q=v/(n+2)

martes, 31 de enero de 2017

Teorema de Viviani

En un triángulo equilátero la suma de las tres distancias de un punto interior a los lados del triángulo es una indepenediente de la posición del punto y que coincide con la altura del tríángulo.

Demostración:

El triangulo equilátero ABC se puede descomponer en los triángulos: ADB, BDC y ADC siendo D el punto interior. Si el lado del triángulo es l, la altura h y las distancias de D a los lados d1, d2 y d3, se cumple: $$\frac{l \cdot h}{2}=\frac{l \cdot d_1}{2}+\frac{l \cdot d_2}{2}+\frac{l \cdot d_3}{2}$$ $$h=d_1+d_2+d_3$$ El teorema es generalizable a polígonos regulares.

Teorema de Ptolomeo

En todo cuadrilátero inscrito en una circunferencia, llamado cíclico, la suma de los productos de los lados opuestos es igual al producto de sus diagonales.

Además se cumple la fórmula de Brahmagupta, que calcula el área del cuadrilátero:
$$A=\sqrt {(s-a)(s-b)(s-c)(s-d)}$$ siendo s el semiperímetro:
$$s=\frac{a+b+c+d}{2}$$

sábado, 28 de enero de 2017

Teorema de Kurschak

Determina el área de un dodecaedro regular a partir de los puntos medios de los lados de un cuadrado. Se debe al matemático húngaro Jozsef Kurschak (1864-1933).
Sobre cada uno de los lados de un cuadrado se construyen 4 triángulos equiláteros interiores.Las 8 intersecciones de los lados de esos triángulos y los 4 puntos medios de los lados del nuevo cuadrado formado por los vértices libres de los triángulos, son los vértices de un dodecaedro regular y pasan por la circunferencia inscrita al cuadrado inicial.
En la construcción se observan dos tipos de pequeños triángulos, unos son equiláteros (E) y otros son isósceles (I).
Se observa que el área del cuadrado está formada por 16 triángulos E y 32 triángulos I. $$A_c=16\cdot E +32\cdot I$$ Por otra parte el área del dodecaedro está formada por 12 triángulos E y 24 triángulos I. $$A_d=12\cdot E +24 \cdot I$$ Por tanto: $$A_d=\frac{3}{4}A_c$$ Si la circunferencia inscrita al cuadrado inicial es unitaria (radio unidad) su área vale pi, el área del cuadrado vale 4 y por tanto el área del dodecaedro vale 3.

Se puede modificar el cuadrado desplazando sus vértices inferiores. Con las flechas se puede observar la construcción "paso a paso".