miércoles, 13 de septiembre de 2017

Método de Descartes

Es un método gráfico de resolución de ecuaciones algebraicas de 3º y 4º grado.

Una ecuación de 3º grado: $$az^3+az^2+bz+c=0$$ se convierte mediante el cambio: $$z=x-\frac{a}{3}$$ en una ecuación de 3º grado del tipo: $$x^3+px+q=0 \; (1)$$ Una ecuación de 4º grado: $$az^4+az^3+bz^2+cz+d=0$$ se convierte mediante el cambio: $$z=x-\frac{a}{4}$$ en una ecuación de 4º grado del tipo: $$x^4+px^2+qx+r=0 \; (2)$$ Si r=0, al simplificar se obtiene la ecuación (1) y se elimina la solución x=0. Si se resuelve el sistema formado por la circunferencia y la parábola: $$(x-a)^2+(y-b)^2=R^2, \; y=x^2$$ se obtiene la ecuación (2) si: $$p=1-2b, \; q=-2a, \; r=a^2+b^2-R^2$$ Entonces el centro y el radio de la circunferencia son: $$a=-\frac{q}{2}, \; b=\frac{1-p}{2}, \;R^2=\frac{q^2}{4}+\frac{(1-p)^2}{4}-r$$ y las soluciones de la ecuación (2) son las abscisas de los puntos de intersección de la circunferencia con la parábola.

Modificando los valores de p, q y r mediante los deslizadores, se obtiene el centro y el radio de la circunferencia y las soluciones de la ecuación de forma gráfica.

No hay comentarios: