martes, 14 de agosto de 2012

Teorema de Von Aubel

En un cuadrilátero, no necesariamente convexo, se construyen cuadrados adosados sobre sus lados de arista igual a cada arista del cuadrilátero. Si se unen los centros de los cuadrados opuestos, las rectas que pasan por esos centros son perpendiculares.

Si uno de los lados se reduce a un punto, se obtiene un triángulo. En este caso también se cumple el teorema, siendo una de las rectas perpendiculares la que une los centros de los cuadrados construidos sobre dos lados contiguos, y la otra la que une el centro del otro cuadrado con el vértice opuesto del triángulo.


Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)


Se puede modificar el cuadrilátero moviendo los vértices, consiguiendo cuadriláteros cóncavos y convexos, e incluso un triángulo, y comprobar el teorema.

No hay comentarios: