Sean los círculos (A) y (B) tangentes exteriores al círculo (C) con los puntos de tangencia F y G, respectivamente. Sean D y E los puntos de tangencia de la recta tangente a ambos círculos, repsectivamente. Si la recta que pasa por D y F se corta con la recta que pasa por E y G en el punto E, entonces ese punto pertenece al círculo (C) y la recta tangente en ese punto es paralela a la recta que pasa por D y E.
DEMOSTRACIÓN
Para la demostración sólo se necesitan los círculos de centros A y C. La prolongación del segmento DF corta al círculo de centro C en el punto H.
Los triángulos ADF y CFH son isósceles porque dos de sus lados son radios de los círculos respectivos. Como los ángulos AFD y CFH son iguales, al ser opuestos por el vértice, también son iguales a los ángulos ADF y CHF. Por tanto AD es paralelo a CH, y ya que AD es perpendicular a la tangente al círculo (A) en D, también es verdad para CH. Pero CH es también perpendicular a la tangente al círculo (C) en H. Por tanto ambas tangentes son paralelas.
Podemos decir que H se encuentra en la perpendicular a la tangente en D a través de (C). Dado que originalmente (A) y (B) comparten esa tangente DE, EG necesariamente pasa por H, de modo que las prolongaciones de CA y DB se encuentran en el círculo (C).
De la prueba anterior queda claro que la presencia de dos 'orejas' de Mickey Mouse en el teorema, aunque divertida, no es esencial. El resultado básico solo trata con un círculo (O1), mientras que la afirmación sigue siendo válida para cualquier número de círculos (O2), (O3),…, simultáneamente tangentes a (O) y a una tangente seleccionada a (O1).