Páginas

jueves, 29 de agosto de 2019

Modelo de población de Leslie


Cuando la variación de una población se realiza en función del tiempo, obtenemos un proceso (continuo o discreto) que recibe el nombre de dinámica de la población. El objetivo de la dinámica de poblaciones es estudiar los cambios numéricos que sufren las poblaciones, determinar sus causas, predecir su comportamiento y analizar sus consecuencias. Vamos a presentar el modelo de dinámica de Leslie, en honor del autor del método, el fisiólogo Patrick Holt Leslie (1900-1974).
Parece claro que a tasa de mortalidad será mayor entre los individuos de mayor edad que entre los más jóvenes. Asimismo a tasa de fecundidad depende también de la edad. Con carácter general, podemos suponer que la población consiste enteramente de hembras. En realidad, para la mayoría de las especies la cantidad de machos es prácticamente la misma que la de hembras. Por otra parte, en lo que respecta a las cuestiones reproductivas, el papel determinante es jugado por las hembras y no por los machos. Vamos a plantear un modelo en el que se tienen en cuenta características particulares de cada uno de los individuos. Según estas características los agruparemos en clases que sean homogéneas a efectos reproductivos y de supervivencia.


Supongamos que la edad máxima alcanzada por una hembra de una población sea L años y que esta población la dividimos en n clases de edades. Cada clase, es evidente que tendrá L/n años de duración. Por lo tanto las clases serán:
$$[ 0\frac{L}{n}), [\frac{L}{n},\frac{2L}{n}),\cdots, [\frac{(n-1)L}{n},L) $$
Supongamos que en el momento inicial (t = 0) conocemos el número de hembras que hay en cada uno de los intervalos. Llamamos xi(0) al número de hembras existentes en el intervalo i-ésimo en el momento inicial. Podemos construir el vector de la distribución inicial de las edades: 
$$x(0)=(x_1(0),x_2(0), \cdots x_n(0))$$
Al pasar el tiempo, por causas biológicas (nacimientos, envejecimiento, muertes), el número de hembras que hay en cada una de las clases se va modificando. Lo que pretendemos es ver como evoluciona el vector x(0) de distribución inicial con el tiempo. La manera más fácil de proceder, para estudiar el proceso de envejecimiento es hacer observaciones de la población en tiempos discretos haciendo que la duración entre dos tiempos consecutivos de observación sea igual a la duración de los intervalos de edad:
$$ t_0=0, t_1=\frac{L}{n}, t_2=\frac{2L}{n}\cdots , t_k=\frac{kL}{n}, \cdots$$
Bajo esta hipótesis todas las hembras de la clase i+1 en el tiempo tk+1, estaban en la clase i en el tiempo tk (suponiendo que no existen muertes ni nacimientos). Se designa:
  • ai es el promedio de hijas que tiene una hembra mientras permanece en la clase i. Tiene que haber al menos un ai>0, es decir, una clase fértil.
  • bes la fracción de hembras de la clase i que sobreviven y pasan a la clase i+1. El valor de bi no puede ser cero, salvo en la última clase, pues entonces nadie sobreviviría a su clase. 
El vector general de distribución de edades para un tiempo tk es: $$x(k)=(x_1(k),x_2(k),\cdots,x_n(k))$$ El número de hembras en la primera clase en una etapa dada, dependerá de las nacidas en la etapa anterior:
$$x_1(k)=a_1x_1(k-1)+a_2x_2(k-1)+\cdots a_nx_n(k-1)$$ El número de hembras en la clase i+1 en una etapa dada será el número de supervivientes de la clase anterior: $$x_{i+1}(k)=b_ix_i(k-1)$$
Vectorialmente se expresará: $$x(k)=Lx(k-1)$$ siendo L la matriz de Leslie: $$L=\begin{bmatrix} a_1 & a_2 & \ldots & a_{n-1} & a_{n-1} \\ b_1 &0 & \ldots & 0 & 0\\ 0 &b_2 & \ldots & 0 & 0\\ \vdots & \vdots&\vdots&\vdots&\vdots \\ 0 & 0 &\ldots & b_{n-1}& 0\end{bmatrix}$$
De donde se deduce: $$x(k)=L^kx(0)$$ y por tanto conocida la distribución inicial y la matriz de Leslie se puede conocer la distribución de la población en cualquier etapa.

En la matriz de Leslie se obtiene un único valor propio positivo si hay al menos dos clases consecutivas fértiles (sucederá siempre que se consideren los intervalos suficientemente pequeños). El autovalor o valor propio debe cumplir:
$$Lv_1=\lambda_1 v_1$$ Para ese valor propio, se puede obtener su vector propio asociado:
$$v_1=(1,\frac{b_1}{\lambda_1},\frac{b_1b_2}{\lambda_1^2},\frac{b_1b_2b_3}{\lambda_1^3},\cdots,\frac{b_1b_2b_3\cdots b_{n-1}}{\lambda_1^{n-1}})$$  ¿Cuál será el comportamiento de la población a largo plazo? Se cumplirá: $$x(k)\simeq\lambda_1^k x(0)\rightarrow x(k)\simeq\lambda_1 x(k-1)$$
  • Cada distribución es proporcional a la distribución anterior, siendo esa constante el valor propio positivo de la matriz de Leslie.
  • La proporción de hembras en cada clase se mantiene constante según el vector propio.
  • La población a largo plazo:
    • Crece si el valor propio es mayor que uno.
    • La población decrece si el valor propio es menor que uno.
    • La población se estabiliza si el valor propio es uno.
Veamos un ejemplo: $$L=\begin{bmatrix} 0 & 4 & 3\\ \frac{1}{2} &0 & 0\\ 0 & \frac{1}{4} & 0\end{bmatrix}$$ Se calcula el valor propio: $$|L-\lambda I|=0 \rightarrow \lambda^3-2\lambda- \frac{3}{8}=0 \rightarrow \lambda_1=\frac{3}{2}$$ Se obtiene el vector propio: $$v_1=(1,\frac{b_1}{\lambda_1},\frac{b_1b_2}{\lambda^2})=(1,\frac{1}{3},\frac{1}{18})$$ El porcentaje de aumento de la población en cada etapa tiende a estabilizarse en un 50%: $$x(k)\simeq\frac{3}{2}x(k-1)$$ La proporción de hembras en cada clase se estabiliza en los porcentajes dados por el vector propio: $$x(k)\simeq (\frac{3}{2})^k(1,\frac{1}{3},\frac{1}{18})=(\frac{3}{2})^k(72\%,24\%,4\%)$$
Descargar .XLS
Sigue las instrucciones de utilización del modelo de Excel que puedes descargar a continuación:
  • Con las flechas se elige la población inicial en cada  clase de edad.
  • Con las flechas se elige el número de descendientes en cada  clase de edad.
  • Con las flechas se elige la tasa de supervivencia en las dos primeras clases de edad.
  • Con la flecha se elige el período temporal de cada etapa.
  • Se observa numéricamente la evolución de la distribución de clases.
  • Se observa numéricamente la evolución del crecimiento de las clases.
  • Se muestra la gráfica de la evolución de la distribución de clases.
  • Se muestra gráficamente la evolución del crecimiento de las clases.